Leitungsgetriebe aus Druckelementen

Die grossartigste Benutzung der Röhren geben die Rohrnetze ab, die unser Jahrhundert in den Städten in den Boden versenkt hat, eine Kulturleistung ersten Ranges; Wasser, Gas und Luft werden durch sie an bestimmte Stellen geleitet, meistens zu blossen Ausfluss, vielfach aber auch zu mechanisch-technischen Kraftäusserungen. Einige Beispiele von bemerkenswerthen Fludgetrieben, die auf blosser Leitung beruhen, stellt Fig. 284 dar. a Wasserdrukwerk zur Senkrechtförderung einer Last Q. Die beiden Kolben sind von gleichem Querschnitt gedacht, daher
Druck \(P \) bei Vernachlässigung der Reibung \(= Q = P \). Die kinematische Kette scheint vorgliedrig, erweist sich aber bei schärferer Betrachtung als blos zweigliedrig, d. h. als ein Elementenpaar aus Wasserstrang und Rohr bestehend, da die Kolben zum Wasserstrang gehören. Vergleicht man nunmehr die Einrichtung mit der unter Fig. 272 a, so erkennt man die gleiche Bildung, nur dass an die Stelle einer Tracks ein Flud getreten ist: dort Track mit Leitrolle, hier Flud mit Leitrohr. Es bietet sich daher der Name hydraulische Rolle dar; besser aber wird sich, da wir jedenfalls für die als einfach erkannte Sache auch einen einfachen Namen haben sollten, die Bezeichnung hydraulischer Hebel, Wasserhebel, Fludhebel eignet. Denn die beiden Belastungsstellen mit ihren um 160° verschiedenen Bewegungsrichtungen sind begrifflich den Armen eines Hebels vergleichbar.

Bleiben wir hierbei, so ist die Einrichtung unter b ein loser Wasserhebel, entsprechend der losen Rolle, kinematische Umkehrung der Einrichtung a für den Fall des Richtungswechsels um 180° statt 160°. c Verbindung der Fälle a und b; die drei Lastkolben gleich, die Last \(Q \) also auf drei gleiche Wasserstränge vertheilt, entsprechend dem dreizügigen Flaschenzug Fig. 274 e. Beachtet man aber noch, dass das Wesen der Flude auch gestattet, ohne Umweg den Wasserdruck unter alle drei Kolben zu bringen, wie in Fig. d, so wird auch klar, dass man die drei Kolben in einen einzigen zusammenziehen kann, wie unter e angegeben und in der hydraulischen Presse üblich ist.

Die Einrichtung e ist aber nach dem Obigen ein ungleicharmiger Wasserhebel, also ein Elementenpaar, bestehend aus einem Flud und einer Kapsel, da die Kolben \(a_1 \) und \(a_2 \) nur die festen Endigungen des Flusstranges sind. So gut wie der Zapfenhebel Fig. 285 a ein mit seinem Lager gepaartes Element ist, das von zwei Kräften ergriffen wird, so hier der mit seiner Kapsel ge-
paarte Fludstrang, Fig. 285 b. Die zahlreichen Anwendungen, die Tweddel und Andere von dieser Einrichtung gemacht haben, treten uns in diesem Lichte in ganz besonderer Einfachheit entgegen*). Aus diesen Bemerkungen gehen die Kolben aufs neue und nachdrücklich als echte Theile der durch sie abgeschlossenen Fludstränge hervor, bei denen die wirksamen Querschnitte gleich sind den Kolbenquerschnitten.

Kurvenführung und Geradführung, die bei den starren Elementen und den Tracken einen so grossen Raum einnehmen, kommen auch bei den Fluden, aber nur in ganz wenig Formen zur Anwendung, z. B. in den Formen des Schiffssteuerruders.

*) Ueber gleicharmigie Wasserhebel an Schachtgestängen, siehe Konstrukteur, IV. Aufl., S. 873.

Die Wiege des Docks ist ein reiner, nicht schwimmbarer Trägerbau, hat 436,5' Länge und 65'7'' Breite — 133 auf 20 m *) — und wird durch 36 Tauchkolben von 780 mm Durchmesser unter Vermittlung von „losen Rollen“, die die Schnelle zweifach, getragen, s. Fig. 286. Es sind also Zugelemente zu Hilfe genommen, und zwar in Form von 8 Stück zweizölliger Stahlseilen auf jeder der Rollen, die ihrerseits 6' oder 1,83 m Höhe haben. Der Wasserdruck

zum Heben der leeren Wiege beträgt rund . . . 18 at,
zum Heben der vollbelasteten Wiege beträgt rund 83 at;
die grösste zulässige Belastung beträgt . . . 6000 t;
Hub der Kolben 14'1½'' oder 4,4 m,
Hub der Wiege 29' oder 8,8 m.

Das Presswasser wird durch Pumpensätze einem Niederdruck- und einem Hochdruckhalter geliefert. Sehr gut durchgeführt ist die Parallelführung. An jedem Kolbenhöhe geschieht näm- lich die Wasserzuleitung durch eine Stellwerksteuerung **), deren Ventil bei *A*, Fig. 286, durch eine Triebwellenleitung mittels einer leichten stehenden Schraube und deren Mutter *G* geöffnet und alsbald durch den aufsteigenden oder niedergehenden Kolben der den Ventilkasten hebt oder senkt, wieder geschlossen wird. Die ausserhalb der Länge des zu hebenden Schiffes bleibenden Kolbenhöhe werden mit Niederdruckwasser gespeist, das nur das todte Gewicht trägt; das obige störende Kräftepaar ist auf diese Weise beseitigt. Das Werk hatte bis Schluss 1897 rund 1300 Schiffe gedockt, d. i. durchschnittlich 11 in jedem Monat. Der ganze Bau ist sehr durchdacht. Jedes der Kolbenhöhe wird von zwei Pfeilern getragen, die aus sieben Stück 100' langen Pfählen bestehen und mit einer gusseisernen Haube oben zusammengefasst sind. Die Seile an den Rollen üben kräftepaarig eine verdrehende Wirkung auf die Kolbenhöhe aus; dieser zu widerstehen sind Freiträger *J*, zwei an jedem Kopf, bestimmt.

*) Das Schwimmdock von Blohm & Voss in Hamburg, das grösste jetzt bestehende, hat 190 auf 36 m Bodenfläche.

**) S. Konstrukteur, IV. Aufl., S. 957, Fig. 1035 a und die sich daraus schliessenden Ausführungen, die das Grundsätzliche an wichtigen Ausführungen erklären.
die 28’ oder 8,5 m hinaus ragen und dort an einem tief ein-
gerammten schweren Pfahl verankert sind. In ihrer höchsten
Stellung wird die Wiege durch hydraulisch bewegte Riegel ab-
gefangen, worauf der Wassерzufluss abgestellt wird*). Als

Mangel des Bauwerks ist vielleicht anzuführen, dass man das
Presspumpwerk hätte grösser wählen sollen, da nach der ange-
führten Quelle die Schnelligkeit der steigenden Wiege nur 3,2 Zoll
oder 81 mm in der Minute (gegen 192 in Hamburg) beträgt.

So sehen wir denn die Fludparallelführung bei grossartigen
Bauwerken vorzügliche Dienste leisten. Es kann indessen auch
Fälle geben, wo zwar ein Flud zum senkrechten Bewegen von
Lasten dient, die in Länge und Breite ausgedehnt sind, aber die

*) S. Scientific American 1896, August, S. 117 u. 120.
Reuleaux, Beziehungen der Kinematik
Parallelführung entbehrlich ist. Bei uns hat man vorgeschlagen, die auf diese Weise durch Edwin Clark mit bestem Erfolg von Greens Zugbetrieb auf Fludbetrieb gebrachte Trogenschleuse (Fig. 287 *), statt mit nur einem Kolben, mit einer Reihe von Fig. 287

solchen zu bauen und kam dabei wie von selbst wiederum dazu, den Trog parallel führen zu müssen. Mir scheint, dass man hierbei viel tüchtige geistige Arbeit versprüht hat. Der Trog der Wasserverbrauch der Schleuse so glücklich einschränkt und die Trogenschleuse in diesem wichtigen Punkte weit über die Kammerschleuse stellt, gibt dem Ganzen die vorzügliche Eigenheit, den Schwerpunkt der auf- und niederzubewegenden Last stets in seiner Mitte zu halten, sodass man sie mit nur einem Kolben tragen kann, ohne eine Kippung fürchten zu müssen. Fallen die Maße für das einzige Kolbenrohr zu unbequem gross aus, so kann man ja deren mehrere, zwei, drei, vier, dicht nebeneinander stellen; die Seitenwände des Troegräfers können zugleich so hoch hinaufgeführt werden, als es dessen Festigkeit erfordert; eine Parallelführung kann aber dann entbehrt werden, da die Kolben schon eine Geradführung bewirken **).

Anders ist es, wenn Kolbenführung nicht stattfindet, wie bei der 16 m-hübigten Schwimmertrogenschleuse, die kürzlich durch die Bauverwaltung bei Henrichenburg für den Dortmund-Emshafen in

*) S. Konstrukteur, IV. Aufl., S. 917.
vorzüglicher Weise fertig gestellt worden ist*). Da wird der Trog von fünf 8,3 m weiten Schwimmern getragen, die sich nun der Troglänge nach vertheilen liessen. Hier hat man eine Schrauben-
parallelführung mit vier Stück 24,6 m langen Schraubenspindeln
angewandt. Vielleicht hätte sich die oben erwähnte Seilparallelführung, Fig. 278 a, wie Towne sie für Laufkrane angewandt hat, s. Fig. 288, wegen ihrer grossen Einfachheit besser empfohlen.

\textbf{Fig. 288}

Man hat die Bauwerke vorliegender Art „Schiffshebewerke“
genannt; das ist unzutreffend, da sie ebenso wohl und ebenso oft
Schiffsenkwerke sind, d. h. nichts anderes als Schleusen. Nennt
man sie insbesondere wegen ihres wichtigsten Theiles TrogSchleusen,
so fesselt man alsbald den Gedanken an das Wichtigste; die
Nebenbestimmung, ob Schwimmer-, ob Kolbenbetrieb, kommt in
zweite Linie, mehr noch, ob Parallelführung angewendet ist
oder nicht.

\textbf{§. 50}

\textbf{Freigängige Parallelführungen}

Während in den besprochenen Parallelführungen dem parallel
geführten Stück bereits alle Punktbahnen vorgeschrieben waren,
indem der führende Mechanismus schon zwangläufig geschlossen
war, gibt es nach S. 308 auch solche, bei denen die letzte
Führung noch fehlt. Davon einige Beispiele.

„Das doppelte Parallelneural2, Fig. 289 (a. f. S.), besteht aus zwei
verbundenen Parallelkurbeln von der gewöhnlichen Form \((C_2' \parallel C_2^\prime)\).

Im sogenannten „Räderknie“, Fig. 290, bei dem die Eckräder a, b, c, \ldots gleich sind und nur je durch ein einziges Zwischenrad mit dem nächsten Eckrad betrieblich verbunden sind, stellt die Eckräder Parallelräder vor, d. h. haben miteinander nur unendlich fern gelegene Pole gemein. Demnach beschreiben alle Punkte des äussersten Eckrades c gleiche Kurven, wenn das Rad überhaupt bewegt, das erste Eckrad dabei nicht gedreht wird. Dreht man aber das erste Eckrad a, so beschreiben die andern Eckräder ganz dieselben Drehwinkel wie a, gleichviel welche Bewegung man auch dem Endpunkt 3 des Knies ertheilen möge. Gerade zu solchen Drehungsübertragungen auf bewegte Körper wird das Räderknie hier und da gebraucht.

An der „Heilmann'schen Stickmaschine“, Fig. 291, die allmählich zum Hauptmittel einer bedeutenden Grossindustrie ausgebildet worden ist, spielen drei Leitungsgetriebe die hervorragendste Rolle, zwei Parallelführungen und ein Storcheschnabel. Neben der Heilmann'schen Maschine hat sich die Schiffschen-
Freigängige Parallelführungen

Stickmaschine eine nicht zu unterschätzende Bedeutung erworben. Die Heilmann'sche Maschine ist eine „Durch“-stickmaschine; sie fährt die Nadel mit dem Nähling durch den Stoff hindurch wie Fig. 291

die Hand, darauf zurück wiederum durch den Stoff, während die Schiffchenmaschine ganz wie die Nähmaschine die Nadel nur tief hinein in den Stoff und dann zurückführt, wobei das Schiffchen durch die sich bildende Schleife des Nählings schlüpft. In unserer Figur erkennt man bei III die freigängige Hebelparallelführung, Fig. 292, die den Stickrahmen auf und ab sowohl als quer hin und her Bewegungen gestattet, aber nur solche in parallelen Lagen. Durch den Storchschnabel, den der Sticker handhabt, wird von 3 aus ein Punkt 3' des Stickrahmens geführt und für jeden Stich entsprechend der Vorzeichnung versetzt. Beim Sticken entsteht also ein umgewendetes verkleinertes Bild

§. 51

Lagenführungen

Drehschaufelrad des Donaudampfers Franz Josef

Erbaut auf dem Danubiuswerk in Budapest.
Schaufel durch je ein Getriebe von der Form \((C')^a\) geleitet, siehe Fig. 293 auf der vorstehenden Tafel, und zwar mit dem Zwecke, die Schaufel ohne Stoss, d. i. in der Richtung ihrer Fläche eintreten und bald darauf möglichst ohne Abschleuderung des Wassers anstreten zu lassen. Dies lässt sich nach der von mir aufgestellten kinematischen Theorie*) recht gut annähernd verwirklichen. Nach derselben haben z. B. die Herren Gebr. Sachsenberg in Rossau die Schaufelung der Räder des Elbdampfers Saale, der schon Drehsaufeln besass, in der Weise, die Fig. 294 andeutet, umgebaut. Darauf gieng die zum Betrieb mit der inngehaltenen Fahrschnelle von 2,25 m erforderliche Umlaufszahl der Räder, also Kolbenspiele, von 33 auf 291/2 herab, was einer Brennstoffersparniss von mehr als \(15/100\) entspricht. Das

auf der vorstehenden Tafel dargestellte Rad gehört dem neuen Donaudampfer Franz Josef, erbaut auf den Danubiuswerken in Budapest, an*), der in bewährtem Betrieb ist.

Sehr entscheidend waren schon die Versuche, die Barlow mit dem Morganrad machte, als es eben in Vorschlag gekommen war. Am „Feuerbrand“, einem Schiff mit radialschauffigen Rädern, wurden zuerst sorgfältige Messungen über Schnelle und Kraftverbrauch gemacht und darauf Räder und Maschinen umgebaut, und zwar nicht eine stärkere, sondern eine schwächere Maschine eingebaut, und alsdann die Messungen wiederholt**). Sie ergaben was folgt.

Angaben

<table>
<thead>
<tr>
<th>Zahl der Schaufeln</th>
<th>14</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fläche der Schaufeln</td>
<td>18</td>
<td>13</td>
</tr>
<tr>
<td>Durchmesser des rollenden Kreises ***</td>
<td>11,88</td>
<td>10,50</td>
</tr>
<tr>
<td>Durchmesser des Schauffelmittelkreises</td>
<td>15,38</td>
<td>15,73</td>
</tr>
<tr>
<td>Verhältniss ihrer Umfangsschnellen</td>
<td>1,30</td>
<td>1,50</td>
</tr>
<tr>
<td>Maschinenstärke</td>
<td>(N=140,\text{PS} \ N_1=120,\text{PS})</td>
<td></td>
</tr>
<tr>
<td>Fahrsnelle in Meilen (Reise nach Korfu)</td>
<td>(v=10,15)</td>
<td>(v_1=10,55)</td>
</tr>
</tbody>
</table>

Um hieraus die Steigerung des Wirkungsgrades des Rad- betriebs zu ermitteln, haben wir zu beachten, dass beim Schiffswiderstand \(P\) die Nutzleistung einer \(PS\) proportional ist dem Werthe \(Pv\cdot N\). Nun ist aber \(P\) mindestens proportional \(v^2\). Dem- nach verhalten sich die Wirkungsgrade \(W_1\) und \(W\) wie folgt:

\[
\frac{W_1}{W} = \frac{v_1^3 \cdot N}{v^3 \cdot N_1} = \frac{10,55^3 \cdot 140}{11,15^3 \cdot 120} = \frac{1,04^3 \cdot 7}{6} = 1,31.
\]

Um nun dieses günstige Ergebniss verständlicher zu machen, setzen wir die obige Zahlenreihe noch etwas fort, und finden:

Festes Rad Morganrad

Fahrsnelle \(v\) in engl. Fuss (Stunde)	53,592	55,704
\(v\) in der Sekunde	14,89'	15,47'
Dasselbe in Metermaß	4,54 m	4,72 m
Umfangssnelle \(c\) des Schauffelmittelkreises	5,90 m	7,08 m
Unterschied \(c - v\)	1,36 m	2,36 m

*) S. Engineer vom 10. Sept. 1879.
***) Kreis, dessen Umfangssnelle gleich der Fahrsnelle des Schiffes ist, also die Polbahn des Rades, die auf einer Geraden, die mit dem Wasser verbunden ist, rollt.
Das festschaufelige Rad des „Feuerbrands“ hatte also das am Schiff entlang streichende Wasser, das seine Schaufeln fassten, auf \(1,36\,\text{m}\) und zwar unter sehr ungünstiger Art des Angriffs beschleunigt; das Morgan’sche Rad beschleunigte unter sehr günstiger \(\text{fast stossfreier Angriffsweise das erfasste Wasser auf } 2,36\,\text{m},\) bedurfte daher für dieselbe Kraftleistung einer beträchtlich kleineren — nur nahe \(\frac{3}{8}\) so grossen — Schaufelfläche und einer weit geringeren Zahl von Schaufeln.

Ähnlich günstige Ergebnisse erhielt Barlow aus Messungen an anderen Schiffen; alle erharteten die Ueberlegenheit des Morganrades über das festschaufelige, auch wenn an letzterem die Schaufeln schrägen oder schraubengangartig angebracht, oder wenn sie treppenförmig gestaltet sind, was sich insbesondere als ungünstig erwies. Das Morganrad, neuordnungs mit den erwähnten, gekrümmten Schaufeln ausgerüstet, ist heute allgemein gebraucht an den Stellen, wo überhaupt das Ruderrad zweckmässig ist, d. i. auf Flüssen und Meeresarmen. Bei dem 7800-pferdigen amerikanischen Flussdampfer Puritan *) haben die Räder 35’ äusseren Durchmesser; ihre, ebenfalls gebogenen Schaufeln haben 14 auf 3’ Fläche und sind aus \(\frac{7}{8}''\) oder 22,2 mm dickem Stahblech hergestellt. Jede der Schaufeln wiegt leer 2800 $$\hat{\text{u}}$$ oder 1258 kg, jedes Rad wiegt rund 100 t, sodass beide zusammen ein ungeheurem Schwungrad bilden.

Wir haben hiermit die Uebersicht über die kinematische „Leitung“, d. i. Erzwungung der Form der Bewegung, beendet. Es verdient sehr beachtet zu werden, dass wir dabei Aufgaben aus dem ganzen Gebiet des praktischen Maschinenwesens zu berühren hatten, vom feinsten Zeichengerät mit Schräubchen und Spitzen an, durch grosse blühende Industrien der verschiedensten Art hindurch bis zu den gewaltigsten Hebewerken und Dampfmaschinen; alle zeigten sich als denselben wissenschaftlichen Gesetzen der Kinematik unterworfen und konnten aus ihrer ver einzelt Stellung heraus in eine solche gebracht werden, in der sie als Theile eines bedeutenden Ganzen erkennbar wurden.

Bei vielen deutschen Fachleuten besteht noch ein altes,

*) S. Scientific American 1891, Februar, S. 87.

Ganz ähnlich konnte schon im ersten Bande, bei den Kapselräderwerken und bei den Kurbelkapselwerken, gezeigt werden, wie ganze Schaaren von Maschinen, die ehemals vereinzelt und in schwer verständlichen Gegensätzen einander gegenüberstanden, sich unter strengste und völlig klare kinematische Gesetze bringen lassen. Es ist dadurch eine Vereinfachung der Anschauungen möglich geworden, die den Kennern der Kinematik die grössten Vorteile gewährt. Ferner konnten die Gesperrwerke, die vorher in einer kaum beschreibbaren Verwirrung und Endlosigkeit dalagen, in eine klare Lehre gefasst werden, einzig und allein auf Grund kinematischer Untersuchung. In welcher Weise dass
die mit Druckelementen arbeitenden Maschinen, und zwar Kraftmaschinen wie Arbeitsmaschinen, auf Grund der Gesperrwerklehre ihrem Wesen nach verständlich wurden und aus Vereinzelung zur Erkenntniss ihrer Zusammengehörigkeit geführt werden konnten, habe ich im ersten Bande allgemein, dann aber unter Verfolgung der dort angezeigten Wege im Besonderen in meinem Konstrukteur (IV. Auflage) gezeigt.

So ist denn gerade diese Kinematik, diese Zwanglauflehre, die man für „unpraktisch“ ausgeben möchte, im höchsten Grade praktisch, und zwar weil sie „theoretisch“ verfährt und nach allgemeinen Gesetzen sucht und nach solchen suchen lehrt. Diese Allgemeinheit des Gesetzes zeigt sich besonders deutlich darin, dass so viele der besprochenen Mechanismen auf die Kette (C") und deren Abarten zurückgehen. Ellipsenzirkel, der Storchschnabel in allerlei Abänderungen, die Ellipsenlenker, die Knochenlenker, eine Reihe anderer „Lenker“ oder Geradführungen, verschiedene Parallelführungen mit ihren merkwürdigen Anwendungen, Lagenführungen wie die der Drehschaufelräder, alle hatten diese Kette zur Unterlage, weit mehr Mechanismen wären noch anzugeben, von denen dasselbe gilt. Die einmal vollständig durchgeführte Untersuchung dieser Kette gilt hiernach für eine grosse Reihe wichtiger Getriebe, obwohl diese als praktische Fälle recht weit auseinanderliegen können. Gerade in diesem Zusammenfassen, dieser Erkenntniss der Zusammengehörigkeit liegt für den Ingenieur eine ganz ausserordentliche Vereinfachung seiner Denkarbeit, eine Vereinfachung, die das Eindringen in die Zwanglauflehre, hier in das Studium einiger Polbahnenpaare, wie z. B. die in Fig. 231 und Fig. 232, reichlich lohnt. Die Vielheit der Anwendungen der (C")-Kette ruft leicht die Vermuthung, ja eine Art von Uberzeugung wach, dass sie die wichtigste aller kinematischen Ketten sei; schon jetzt aber möchte ich darauf aufmerksam machen, dass sich weiter unten eine andere Kette, beziehungsweise Mechanismenreihe als noch wichtiger herausstellen wird.

§ 52

Haltungen

Eine Haltung nenne ich bei den vorliegenden Untersuchungen eine mechanische Einrichtung, die zum zeitweiligen Auf-
sammeln und Abgeben von Arbeitsvermögen geeignet ist
den Namen habe ich den so bezeichneten Kanalabschnitten und
Bergbauanlagen entlehnt, wende ihn aber auf alle drei Elemente-
gattungen, die starren, die Zug- und die Druckelemente an.

Der Häufigkeit ihrer Verwendungen nach sind diese drei
des hier in umgekehrter Reihenfolge aufzuführen; weitaus die meisten
Haltungen werden mit Fluden, beträchtlich weniger mit Tracka
und am wenigsten mit starren Elementen gebildet. Die Häufig-
keit der Fludhaltungen hängt damit zusammen, dass, wie S. 218
gezeigt, die allermeisten uns dargebotenen Naturkräfte an Flud-
gebunden sind.

I. Fludhaltungen

Bei den mit Fluden gebildeten Haltungen werden Spannung-
unterschiede verwerthet, indem nämlich das in Haltung ge-
nommene Flud entweder höher, stärker, oder aber tiefer, schwächer
gespannt ist, als es seinem natürlichen Zustand an der Ver-
brauchsstelle entspricht, d. h. wir können daher:

a) Hochdruck- oder Ueberdruckhaltungen,

b) Tiefdruck- oder Unterdruckhaltungen

unterscheiden. Beide kommen gelegentlich natürlich vor; in der
Mehrzahl der Fälle bilden wir sie ganz oder teilsweise künstlich.
Eine kurze Ueberschau wird geeignet sein, den Haltungsbegriff
klar hervortreten zu lassen.

A. Ueberdruckhaltungen

1. Städtische Wasserleitungen versieht man gewöhnlich mit
Hochbehältern *), gemuertierten oder eisernen, die alsdann mit ihrem
Rohrnetz und ihrer Zufuhr- oder Speisungsanlage Haltung bilden. Die Alten suchten, wo immer möglich, natürliche Spei-
sungs ihrer städtischen Wasserhaltungen auf; neuere solche An-
lagen sind die schönen Hochquellenleitungen von Frankfurt a. M. **) und von Wien. Wo hochgelegene Quellen für diese Leitung

*) Mit unschönen Fremdwort von Vielen „Hochreservoir“ genannt.
**) Näheres über diese ausgezeichnete, aus vier Haltungen gebildete Anlage s. Konstrukteur, IV. Aufl., S. 874.

3. Druckhalter für besonders stark gepresstes Fluid, recht eigentliche Hochdruckhalter von 20, 50 bis 200 at Druck sind die sogenannten (Wasser-) Akkumulatoren; sie werden in fortwährend steigendem Maße zu allerhand Betrieben gebraucht, nachdem sie sich für Wasserkranen, Schleusenthoren-, Drehbrückenbetriebe und Aehnliches vorzüglich bewährt hatten. Diese Wasserdruckhalter haben anstatt der Belastung durch eine hohe Wassersäule, die z. B. für 100 at Druck 1000 m hoch sein müsste, Belastung durch

*) S. Dumreicher: Gesammt-Ueberblick über die Wasserwirthschaft des nordwestlichen Oberharzes, Clausthal 1868.
schwere Gewichte, so bei dem in Fig. 296 dargestellten Tweddell-
schen Druckhalter gusseiserne Ringe d_1, und zugleich, damit die
Eisenlast auf eine kleine Kolben-
fläche wirkt, einen Zwischekolben nach
Fig. 212 e. Dieser Kolben ist fest
aufgestellt — Paarumkehrung gegen-
über letztgenannter Figur — und
stellt, wie wir oben, S. 334 erörtert
haben, das eine starre Ende eines
Fludstranges vor, dessen anderes Ende
(in der Werkstätte) wieder in einen
oder mehrere Kolben ausläuft (vergl.
ober S. 333). Der Wasserstrang tritt
durch das Rohr A aus, das Zufuhr-
wasser durch Rohr H ein. Somit ist
der ganze gewaltige Druckhalter bloss
ein Theil eines Elementenpaares, be-
stehend aus Flud und Kapsel. Das
vollständige Paar hatten wir in Fig.
285 b vor uns (abgesehen vom Zwisel-
kolben); man hat sich dasselbe bloss
so verwendet zu denken, dass der
eine Kolben, z. B. a_2, fest aufgestellt
wird und die äussere Kraft auf die
Kapsel b wirkt. Hier liegt einer der
Fälle vor, in denen wir gelegentlich
dadurch überrascht werden, dass der
Maschinenbauer ganze Theilreihen zu
einem Stück verbindet, wobei die-
selbe Einfachheit zu Tage tritt, die
ich hier durch Beweisführung darzu-
legen hatte.

Wegen ihres geringen Wasser-
gehaltes muss Druckhaltern vorlie-
gender Bauart immer selbstthätig
Wasser zugepumpt werden, sobald
Verbrauch stattgefunden hat. Dabei
sinkt und steigt die Eisenlast $d\,d_1$ oft
sehr schnell, was mächtige Massen-
wirkungen auftreten lässt. Die Span-
nung, die in dem dargestellten Druckhalter der statischen Be-
lastung entspricht, beträgt 100 at; sie steigt aber bei raschem
Niedergang der Massen auf 193 at*). Von Druckhalten für
Schmiedepressen unten mehr.

4. Sehr zahlreich sind die Haltungen, die man angelegt
hat, um den Ablauf der natürlichen Niederschläge zu regeln,
dem man durch Barren und Thalsperren Sammelbecken bildete.
Letztere nehmen die Wasserüberschüsse auf, die sonst Über-
schwemmungen verursachen würden, und geben sie in wohl-
geregeltem Lauf an Landwirtschaft und Gewerbebetrieb ab.
Solche Werke baute man schon — und zwar blos für die
Landwirtschaft — im Altertum. Ein grossartiges und berühm-
tes Beispiel liefert der einstige Mörissee in Aegypten, der durch
den Monate die Überschwässer der Nilfluth aufnahm und in dem
folgenden sechs wieder hergab (die Kanäle lagen nebeneinander).
Den scharfen Untersuchungen Heinrich Brugschs ist es zu
danken, dass wir jetzt die vielumstrittene Grösse dieses künst-
lichen Sees recht gut kennen**). Seine Oberfläche maß fast
genau $\frac{1}{2}$ deutsche Quadratmeile oder 28,125,000 qm, seine Tiefe
über 7 m, was einer Wasserräume von rund 200 Millionen Kubik-
meter entspricht. Schwerlich viel kleiner war der, ebenfalls
künstliche Nîtokris-See in Assyrien, der zwei Jahrtausende vor
unserer Zeitrechnung unweit Babylon ausgegraben und durch den
mächtigen Pallakopaskanal aus dem Euphrat gespeist wurde.

Indien war das Land der Thalsperren und Sammelbecken
schon früh so weit die Geschichte reicht; noch heute zählte man
in der Präsidentschaft Madras allein über 53,000 Sammelteiche.
Die Engländer haben aber auch die Sache nicht liegen lassen
und schöne Bauten, bei denen der Kraftbetrieb neben dem land-
wirtschaftlichen berücksichtigt wurde, errichtet. Jüngst fertig
beworben ist der Damm von Peryar in Südrindien (bei Madura).
Der See, den er gebildet hat, besitzt eine Oberfläche von
0.69 deutschen Quadratmeilen, d. i. 1.4 mal so viel als der einstige
Mörissee. Vor dem Damm ist der See 39 m tief. Rechnet man
für die mittlere Tiefe nur 13 m, was nach Dumreichers Hart

*) Vergl. Konstrukteur, IV. Aufl., S. 1069 und die ausführlichen Mit-
theilungen in den Minutes of proceedings of the Inst. of Civ.-Engineers
1883, Bd. 73, S. 92.

**) S. Westermanns Monatshefte 1893, Bd. 73, S. 118, Heinrich Brugsch.
Der Mörissee.
berechnung viel zu wenig wäre, so ergibt sich eine Wasserräume von über 500 Millionen Kubikmeter*).

5. Natürliche Haltungen, die den Ablauf der Niederschläge regeln, sind die Seen in Gebirgsländern. So verhältn sich die Hochwassermenge des Rheins zu dessen Niedrigwassermenge gleich Fig. 297

oberhalb des Bodensees wie 10,9 : 1 und gleich unterhalb wie 4,9 : 1; bei Rhone und Genfersee betragen die beiden Verhält nisse 12,7 und 5,1 ***). Aber auch der Zufluss zu diesen Seen oder ihren Speisern ist wiederum durch andere natürliche Haltungen geregelt; das sind die Gletscher, in denen eine ungeheure Schneemenge zunächst in den gefrorenen Zustand und aus diesem in den des Eises übergeht, das allmählich im Gletscherbett und am Gletscherfuss abschmilzt †).

6. In der Petroleumbeförderung spielen Haltungen eine her vorragende Rolle; Fig. 297 stellt eine Petrolhaltung dar, $a_1 a_2 a_3$

***) Der Verfasser wies bereits 1876 in seiner kleinen Schrift, Über das Wasser, Berlin, Nicolai, auf die Wichtigkeit der Haltungsba ten und auch auf unsere Versäumniss hin; jetzt staunt man bei uns im grossen Publikum die Thalserren als neue Erfindungen an.

Bohrlöcher mit (Dampf-) Pumpwerken, die das artesisch erbohrte Oel durch Rohrleitungen \(b_1 b_2 b_3 \) oft meilenweit zu dem Hochbehälter \(c \) fördern. Aus diesem fließt es durch eine abermals oft meilenlange Leitung \(c_4 \) nach einem Verladeplatz. Die Beteiligung der Gewerkschaften, denen die Stellen \(a_1 a_2 a_3 \) gehören an dem Vertrieb bei \(d \) ist durch Verträge und Abkommen geregelt.

Haltungen in der Form eiserner Behälter sind auch für Sprit, der Steuerüberwachung wegen, mit bestem Erfolg eingerichtet worden.

7. Die Leuchtgasbehälter oder sogenannten Gasometer bilden mit ihrem Rohrnetz und ihren Speisevorrichtungen vollständig oft grossartige Haltungen. Die Gasglocke bildet den festen Abschluss des gasförmigen Fludstranges ganz wie das Kolbengehäuse oder die Kapsel \(d \) beim Wasserdurchhalter, Fig. 296, belastet auch ebenso den Fludstrang. Diesen festen Abschluss konnte man beim Petroleumhalter von vorhin entbehren, hier aber wegen der Ausdehnungskraft des Gases nicht. Ganz deutlich wird hier wieder, dass der Kolben nicht für sich bestellt sondern zum Flud gehört. Die Führung des festen Abschlusses des Fludstranges wurde bei dem Druckhalter in Fig. 296 durch ein angefügtes Prismenpaar bewirkt. Bei grossen Gasglocken machte diese Führung, bei der man wohl Ketten mit Geger gewichten zu Hilfe nimmt, gewisse Schwierigkeiten, da man sich genöthigt sah, Parallellführungen zu Hilfe zu nehmen, weil die Glocke lose in ihrer Wasserdichtung sitzt und schon durch Reibung schief gestellt werden könnte. Die Ingenieure Madd und Mason in Manchester haben alle hier entstehenden Schwierigkeiten gehoben, indem sie statt des Prismenpaares das Schraubenpaar unvermittelt anwandten. Sie gestalten die Gasglocke als Schraube \(- S^+ \) und die nächste sie umgebende Hülle \(S^- \) Schraubenmutter \(- S^- \), sodass beide zusammen ein kinematisches Schraubenpaar (vergl. Fig. 106 c) bilden; es wird geschrieben \(S^+ S^- \) oder abgekürzt \((S) \). Wasserverschluss ist nach wie vor angewandt. Diese Bauweise ist auch dann leicht zu verwirklichen, wenn in Fig. 298 dargestellt, die Glocke teleskopisch gebildet wird *)

8. Nach dem Muster der Hochdruck-Wasserhalter hat man künstlich belastete Druckhalter auch für Luft gebaut. Besonders wichtig ist die so verfügbar gemachte Druckluft da geworden, wo sie die Gewichtsbelastung eines Wasserdruckhalters ersetzt, diesen also von den oben, S. 352, erwähnten Massenwirkungen der auf- und niedergetriebenen Eisenmassen befreit, dennoch aber ausserordentlich hohe Wasserpressungen zu erzielen ermöglicht. Druckluft aus einem künstlich mit Gewichten belasteten Lufthalter belastet also dann, wiederum künstlich, einen Hochdruck-Wasserhalter *)

9. Auch der Windkessel an der Feuerspritze und an Flüssigkeitspumpen überhaupt ist ein Ueberdruckhalter, der die zugepumpte Flüssigkeit mit gespannter Luft belastet; er dient dazu, sparung der Führungssäulen, sowie von mehr als 30 v. H. an Baustoff, Anstrich und Fuhrkosten zeichnen die einfache kinematische Bauart aus.

*) S. „Stahl und Eisen“ 1891, Nr. 1, wo der mit Luft belastete Halter von Prött & Seelhoff ausführlich dargestellt ist.
die in absetzender Bewegung zutretende Flüssigkeit stossfrei ein- und nahezu gleichförmig austreten zu lassen. Wie wir aus Vitruv wissen, wurde der Windkessel von dem griechischen Mechaniker Ktesibios, der um 130 v. Chr. in Alexandrien lebte und Heros Lehrer war\(^*\), erfunden und, genau so wie bei uns, in der Feuerspritze und beim Springbrunnenbetrieb verwertet.

10. Mit dem Windkessel verwandt, aber nicht ihm gleich ist das vom Verfasser angegebene Wasserbecken mit Luftpolster. Fig. 299. Es ist eine Haltung für Flüssigkeiten, bei der die bisher allein übliche Höhenlage der Aufstellung auf Thürmen.

Fig. 299
Luftpolsterbecken

11. Haltungen für gespannte Luft, also gasförmiges Fluid (nicht, wie soeben, tropfbares), sind überaus häufig angewandt.

\(^*\) Dass damals schon eine bemerkenswerthe Entwicklung vorlag, die Bedeutendes vermochte und leistete, haben wir oben, S. 201 ff., gesehen.
Eine solche ist der so zu nennende Lufthalter am Blasebalg des Schmieds, an dem der Drehruegel, der Kirchenorgel und mancherlei anderen Einrichtungen. Der erste Theil des Blasbalges ist ein Luftpumpwerk, der zweite ein Lufthalter, der mit Gewicht belastet ist, wie der Wasserdruckhalter in Fig. 296. Die Luft wird ihm ganz unstetig, hubweis, zugeführt; seine Gewichtsbelastung hebt sich dabei, wenn mehr zu- als abfließt, und sinkt im umgekehrten Falle, immer die Luft unter demselben statischen Druck entlassend. Das Musikwerk Orgel, das schon die Römer kannten (Vitrue), scheint Veranlassung zur Hinzufügung des Lufthalters zum uralten einfachen Blasbalg gegeben zu haben.

*) Daran wird der ungeübte Harmoniumspieler deutlich gemahnt, wenn er „Expression“ zieht, die nämlich nichts anderes ist, als Ausschaltung des Lufthalters. — Zur homerischen Zeit war den griechischen Handwerkern der Lufthalter am Blasbalg noch unbekannt; die Menge der Bälge musste ihn ersetzen, wie z. B. die zwanzig in Hephaestos’ Werkstatt beim Schmieden von Achills Waffen. Noch heute fehlt der Lufthalter am Blasbalg des Handwerkers in Indien, China, Java, auch Binnenafrika, so viel und geschickt er auch an allen diesen Stellen schmeiut und schmiedet.

**) Die in Neuerburg seit Mitte 1806 erscheinende Monatschrift „Compressed air“ gibt regelmässige Mittheilungen über den fortwährend steigenden Stand der Sache.
In Paris werden durch die Compagnie Parisienne de l'Air comprimé gegen 3000 PS an Abnehmer zum Werkstättenbetrieb geliefert.

**) Vergl. Reuleaux, Kurzgefasste Geschichte der Dampfmaschine, II. Aufl., Braunschweig 1891; auch Dr. E. Wintzer, Denis Papin's Erlebnisse in Marburg, Marburg, Elwert, 1898.

Eine andere Haltung für körneriges Flud ist der Silo, der hohe, stehende Getreidebehälter, deren in der Regel mehrere nebeneinander gebaut werden; das Korn wird in sie durch Bescherwerke und andere „Getreidepumpen“ gehoben, durch Schleppriemen (S. 157) quer befördert, auch unter Umständen von hochliegenden Bahnen aus von oben eingeschüttet, nach Fig. 300

Bedarf sodann unten ausgelassen. Die Silospeicher sind in den Vereinigten Staaten zuerst im Grossen entwickelt worden und haben dem Getreidehandel und -Verkehr seine heutigen Formen gegeben. Grossartige Silospeicher hat die rumänische Regierung in Galatz und in Braila an der unteren Donau nach Entwürfen des Generalinspektors Saligny errichtet; die Ausführung hat die Maschinenfabrik von G. Luther in Braunschweig
musterhaft bewirkt. Fig. 300 (a. v. S.) zeigt im Querschnitt den seit 1893 im Betrieb befindlichen Silospeicher in Galatz. Derselbe enthält 162 sechskantige Zellen von 3,5 m, und 110 Stück von 2,5 m innerem Durchmesser und nahe 17 m Höhe; die Zellenwände bestehen aus Monierplatten*). Die Wichtigkeit der Silospeicher findet mehr und mehr Verständniss bei uns.

B. Unterdruckhaltungen.

17. Eine Unterdruckhaltung ist der Kondensator der Dampfmaschine. Als Watt diese Haltung einführte oder erfand, setzte er der oberen Haltung Dampfkessel, die damals nur eines sehr geringen Ueberdruck aufwies, die Haltung für Tief- oder Unterdruck am Fuss der Dampfsäule entgegen. Die Haltung Kondensator wird an manchen Stellen von der Dampfmaschine abgelöst, gesondert ausgeführt, was mit der Dampfkesselanlage schon früh geschah, aber in der Lokomotive wieder aufgegeben wurde. Der getrennte Kondensator als besondere, für sich bestehende Anlage, d. i. also die ausgebildete Tiefdruckhaltung für ganze Gruppen von Dampfmaschinen, ist in den letzten Jahr-

Tiefdruckhaltungen

361

zehnten mehrfach einzuführen versucht worden. Nachdem auf
den Seeschiffen die Oberflächenkondensation so wirksam die
Einspritz-Niederschlagung verdrängt hatte, schien für die Land-
dampfmaschinen die „Abkühlung durch Verdunstung“ grosse
Erfolge zu versprechen. Man ist indessen nach ausgedehnten
Versuchsausführungen in letzterer Zeit wieder von ihr zurück-
gekommen und wendet nun für solche Tiefdruckhaltungen die
Oberflächenkondensation an *).

18. Die von Hobrecht entworfenen und in vollendeter Form
ausgeführte Entwässerung der Stadt Berlin geschieht vermittelst
vierzehn Tiefdruckhaltungen, genannt Radialsysteme, in denen
der Unterdruck durch Dampfpumpwerke herbeigeführt und den
Abwässern das erforderliche Gefälle verschafft wird. Die auf-
genommenen Flüssigkeiten werden von Dampfpumpwerken durch
Rohrleitungen zu den fern auswärts gelegenen Rieselfeldern be-
fördert.

19. Unterdruckhaltungen von höchster volkswirtschaftlicher
Bedeutung sind die sog. Polder, vermittels deren weite Fennen
oder Vennen, die tiefer als der Meeresspiegel liegen, bewohn-
und anbaubar gemacht worden sind. Die grossartigsten Polder-
anlagen hat Holland aufzuweisen. Seine Polder erstrecken sich
über mehr als 17 deutsche Quadratmeilen oder 943 qkm oder
rund 380.000 Morgen Landes. Als Pumpmaschinen dienten
(von 1440) bis 1840 namentlich Windmühlen; von da ab nahm
man Dampf zu Hilfe. Das Harlemer Meer, das von 1841 bis
1850 trocken gelegt wurde, hatte eine Oberfläche von 183 qkm
oder 31/4 deutsche Quadratmeilen. Vergleichen wir damit die
oben erwähnte grosse Ueberdruckhaltung in Indien, am Peryar,
so sehen wir, dass letztere nur etwas über 1/3 so viel Oberfläche
aufweist. Die Räume des zu beseitigenden Wassers war freilich
kleiner als die am Peryardamm aufgehaltene, betrug nämlich
75 Millionen Kubikmeter gegen die dortigen 500. Neuerdings
hat Holland die Riesenarbeit begonnen, die Zuiderssee, die allein
24 Quadratmeilen Oberfläche hat, zu poldern; zunächst ist der
südliche Theil in Angriff genommen.

Im Kreise Preussisch-Holland haben die eingewanderten
Holländer Polder angelegt. Neuerdings ist ein Abschnitt des

*) Bei uns werden solche Tiefdruckanlagen gebaut von den Fabrikanten
Langen & Hundthausen in Grevenbroich und Klein, Schanzlin & Becker in
Frankenthal.
Kurischen Haffs durch eine von der Allgemeinen Elektrizitäts-Gesellschaft ausgeführte Maschinenanlage mit Wurfradbetrieb zum Polder gemacht worden. Man hat dafür im Memeldelta vor dem Kurischen Haff ein Gebiet von 18000 Hektaren oder rund 72000 Morgen Landes eingedeicht und hebt daraus mit sechs, ringsum vertheilten Wurfrädern — ein siebentes Schöpfwerk ist im Bau — das Wasser in das Haff. Die Räder, die 8 m hoch und 1,68 m breit sind, werden von einer Dampfmaschine aus betrieben; die Kraftzuleitung geschieht elektrisch. Hebungshöhe 0,9 bis 1,8 m. Bei 0,9 m Förderhöhe wirft solch ein Rad sekundlich 1,7 cbm Wasser*).

Als eine natürliche Tiefdruckhaltung ist die Meeresebene anzusehen. Die zahlreichen Vorschläge, sie zu Kraftzwecken nutzbar zu machen, haben kaum Aussicht auf Verwerthung, weil die Kosten, die für die nöthigen Kraftanlagen aufzuwenden wären, im Verhältniss zur nutzbaren Leistung viel zu gross sind.

II. Trackhaltungen

22. Haltungen mit Zugelement werden vermittelst der mehr erwähnten Wicklung erzielt; es sind namentlich Seile, Schnüre, Ketten, selten Bänder, die hier Verwendung finden. Eine Last wird mittelst eines Trackes, das sich auf eine Trommel wickelt, auf der es mit seinem Zopfende dauernd befestigt ist, aufgewunden und wirkt sodann beim Niedersinken treibend. Das Ver-

*) Näheres über diese schöne Anlage s. Elektrotechnische Zeitschrift 1897, Heft 39.
Haltungen aus starren Elementen

III. Haltungen aus starren Elementen

23. Die erste ist die „Haltung mit Federkraft“. Die Federn sind kraftschlüssige Elemente aus starrem Stoff. Sie verhalten sich zu den gewöhnlichen starren Elementen, die nur vernachlässigbar kleine Formänderungen erfahren, wie die gasförmigen Fluide zu den tropfbar flüssigen. Vorwiegend benutzt man zu Haltungen Spiralfedern und wendet diese bekanntlich an ähnlichen Stellen an, wie die Trackhaltungen. Sie haben mit letzteren die Verwandtschaft des Wickelns, besitzen aber sodann

die höchst wichtige, sie von ihnen unterscheidende Eigenschaft, dass sie in ihrem Gange von der Schwerkraftrichtung unabhängig sind. Das hat ihnen die ausserordentlich grosse und wichtige Verwendung in den tragbaren Uhren und anderen Getrieben verschafft; die Seefahrt gewann erst ihren Aufschwung durch die von Federn getriebene und von einer Feder geregelte Seeuhr, und ist heute mehr als je von ihr abhängig.

Die zweite Art der Haltungen aus starren Elementen ist diejenige, bei welcher Arbeitsvermögen „in der Form von lebendiger Kraft“ aufzuspeichern ist. Während alle bis hierher aufgezählten Haltungen solche für statische Wirkung waren, sind die nun in Rede stehenden solche für dynamische Wirkung; wir können sie daher „dynamische Haltungen“ nennen*).

Die Eigenschaft des Schwungrades als Haltung wurde auf den russischen Bahnen versuchsweise durch den sog. „Mahoves“ zu verwerthen gesucht. Es war ein sehr schweres Schwungrad, das auf Reibrädern lief und die auf der flachen Strecke aufgenommene lebendige Kraft auf der steigenden Rampe an die Räder des Wagens, der es trug, abgab. Ausgestellt in Paris 1867***).

25. Hochwichtige Verwendungen findet die dynamische Haltung in den Gangreglern oder Regulatoren der Kraftmaschinen Watts weltbekanntes, vorbildliches Schwungkugelpendel, dessen...

*) Vergl. Konstruktions, IV. Aufl., Vorrede, S. XXVII.
**) Berechnung z. beispielsweise in Weisbachs Ingenieur, VII. Aufl. S. 733; Ausführliches in Radingers Dampfmaschinen, S. 87 ff.
Haltungen als Gangregler

aussere Gestalt man nicht mit Unrecht zu einem Sinnbild des Maschinenwesens erhoben hat, ist eine „dynamische Haltung“ von solcher Einrichtung, dass Zu- und Abnahme ihrer Umlaufschnelle Verstellungen in der Gliederung des Getriebes bewirken, die den Triebstoffzulass verringern

Fig. 301

oder vermehren. Sie ist bestimmt, den guten Gang der Maschine zu erhalten; man kann sie deshalb statt Gangregler auch Ganghalter nennen *). Eine ganze Nachkommenreihe von

Ganghalten hat dieselbe eben angegebene Grundlage; vergleiche auch die drei Bauarten auf S. 173 und 182.

Es sei bemerkt, dass man statt der dynamischen Haltung auch eine statische einem Gangregler zu Grunde legen kann. Dies ist z. B. geschehen in dem häufiger genannten als benützten Ganghalter von Molinié, Fig. 301 (a. v. S.), statische Lufthal tung mit Gewichtsbelastung und feinem Luftabfluss; sein Balgkolben ist durch einen Scheibenkolben mit Cylinder ersetzt worden durch Johnson *), auch Reigner-Poncelet, die Luft durch Wasser durch Georges **), ohne Änderung des Grundgedankens.

Man hat in der viel umworbenen Aufgabe die dynamische Haltung noch anders zu verwenden gesucht, als die obige Begriffsbestimmung angibt, nämlich in den sog. „Trägheits“-Ganghaltern aber mit wenig Glück. Denn die vorausgesetzte Unveränderlichkeit der Umlaufszahl der Schwungmasse ist nicht vorhanden. Eine bestimmte Umlaufszahl kann zeitenweise zwar erhalten werden, aber einmal ist sie hoch, einmal niedrig, je nachdem sie eingelegt worden war, während wir vom Ganghalter verlangen, dass er immer auf eine und dieselbe wirkliche Umlaufszahl einstelle. Ganghalter, die nicht auf Haltung beruhen, gibt es auch; Luft und Wasser als widerstehende Mittel sind herangezogen worden, auch Reibung, wie z. B. bei den grossen Fernrohren zur Sternverfolgung, wo Triebwerke Reibungswiderstände zugeführt oder abgenommen werden, bis der genaue Lauf um die Erdachse eintritt.

Erwähnt sei hier noch, dass bei den kornischen Hubmaschinen zum Pumpenbetrieb die Gangregelung ebenfalls durch Vermittlung einer Haltung geschieht; es ist der sogenannte Katarakt, eine Fludhaltung mit Gewichtsbelastung und kurzem, verstellbarem Ablauf, meist mit Wasser, seltener Oel, oder auch mit Luft wirkend, und Wasser katarakt, Oelkatarakt, Luftkatarakt genannt. Kleine Abwand-
lungen in den Einzelformen sind selbstverständlich zu finden; Kley wandte statt Gewichtsbelastung die Federbelastung, Fig. 302, an.

26. Endlich sei noch angeführt, dass das Pendel und die Unruh, die Taktgeber der Uhren, im Grunde genommen dynamische Haltungen sind, die wegen der Eigenschaft, dass ihre Schwingungen genau oder sehr annähernd zeitengleich stattfinden, die bekannten ausgezeichneten Dienste für die Zeitmessung leisten. Der Ablauf, den sie durch die Auslösung der Hemmung erfahren, wird ihnen bei jedem Schwung, oder, wie bei grossen Thurmuhren, etwa halbminutlich oder auch erst minutiell ersetzt (Mannhardsts Uhr auf dem Berliner Rathhaushurm).

IV. Natürliche Haltungen in Körpern

Die weiter oben besprochenen natürlichen Haltungen, als welche sich die Gebirgsseen, die Gasquellen usw. ergeben haben, tragen alle die kinematische Grundform der „Leitung“ an sich. Ganz dicht an der Grenze des kinematischen Gebietes gibt es aber noch Haltungen physikalischer Art, die hier anzuführen sind. Es sind die Brennstoffe.

Natürliche und künstlich errichtete Kohlenvorräthe auf dem Land und auf Schiffen bilden, hier ganz abgesehen von der Behandlung der Kohlen als körneriges Flud (§. 218), Haltungen

§. 53

Wichtigkeit der Haltungen

Die gegebene Übersicht über die verschiedenen Arten von Haltungen zeigt, dass dieselben eine hoch hervorragende Stellung im Maschinenwesen einnehmen; denn wir finden sie über das ganze Gebiet der Maschinentechnik verbreitet.

Die Dampfmaschine mit ihren 25 bis 30 Millionen Pferdestärken empfängt ihr Betriebsfluid, den Dampf, aus Haltungen,
Wichtigkeit der Haltungen

Aus Lufthaltungen, für Uebere- wie Unterdruck, sehen wir die Rohrpost, gewisse Tunnelbohrmaschinen, zahlreiche Hebezeuge, auch Strassenbahnen betrieben; auch der Torpedo birgt eine Hochdrucklufthaltung für sein verborgenes Fortbewegungsmaschinen. Elektrische Stromhaltungen sind ein wesentliches Mittel geworden, unstetiger Entnahme durch ziemlich stetigen Kraftbetrieb gerecht zu werden.

Die Trackhaltungen leisten für kleinere Kraftbedürfnisse, wie die der Wanduhren, der Telegraphen und anderer Einrichtungen unzähligemal Dienste, der wichtige Glockenzeichendienst auf den Eisenbahnen wird von ihnen mit Triebkraft versorgt.

Die starren Elemente liefern die unentbehrlichen dynamischen Haltungen, als welche sich die Schwungräder und der grösste Theil der Ganghalter oder Gangregler der Kraftmaschinen ergeben haben; die Federaufzüge in den tragbaren Uhren *) sind von kaum zu schildern der Wichtigkeit für die Kultur.

Trotz dieser Bedeutung der Haltungen hatte man sie in der theoretischen Maschinenlehre nicht ausgeschieden; der Verfasser das in Veröffentlichungen vor einem Jahrzehnt **), vorher in seinen Vorlesungen. Die Zwanglauflehre führte nämlich mit Notwendigkeit zu der Frage, aus welchen Quellen denn der Bewegungszwang die mechanischen Kräfte schöpfe. Die daraufhin

*) Jährlich werden über 6 Millionen Taschenuhren erzeugt und, wie den Anschein hat, auch verbraucht.

**) S. Konstrukteur, IV. Aufl., S. XXVII.

Reuleaux, Beziehungen der Kinematik

24
angestellte Untersuchung führte dann auf die grossartige Anwendung des Haltungsbegriffes, die im Vorausgehenden in ge- drängter Kürze vorgeführt worden ist. Die Benutzung dieses Begriffes geht so weit, dass der Leser sich veranlasst sehen könnte, zu fragen, ob nicht nach alldem die Haltung zu den Grundeigenschaften der Maschine gehören und demnach in der Begriffsbestimmung der letzteren (§. 38) ihren Platz hätte finden müssen.

So ist denn die Haltung nicht ein, nach dem logischen Sprachgebrauch, „wesentlicher“ Theil der Maschine an sich, wohl aber ein ganz hervorragend wichtiger Theil des Maschinenwesens. Wer als Ingenieur oder als Lehrer mit dem klar erkannten Haltungs begriff rechnet, arbeitet, entwirft, zu erläutern sucht, wird ungleich schneller und leichter zum Ziele gelangen, als es
ihm ohne denselben möglich ist. Das Begriffliche, das überhaupt in der Kinematik in vorderer Linie steht, kommt hier besonders wirksam zur Geltung.

§. 54

Treibung

die Haltung blieb ganz unerwähnt, jedenfalls unerkannt, und die Gestaltung, auf die wir ja weiter unten einzugehen haben, wurde stillschweigend, wie etwas ganz Fremdes, der Technologie überlassen, die aber selbst noch in den Anfängen steckte. Es war also nur eines von den vier Untersuchungsgebieten (S. 254) was die alte Mechanismenlehre zu bearbeiten unternahm. Ihre Bemühungen waren nun keineswegs fruchtlos; ihre Grundsätze aber können für das eigentlich wissenschaftliche Verfahren heute nicht mehr verwertet werden, da sie nur sammelnd, nur „encyklopädisch“ an die Aufgabe gehen. Auch die Treibung selbst kann mit jenen Grundsätzen nicht mit Erfolg durchforscht werden, da denselben dazu die theoretischen Unterlagen fehlen.

Uns tritt bei der Untersuchung der Treibung alsbald als sehr bemerkenswerth entgegen, dass der in ihr Verwendung für denden Getriebe gar nicht viele sind. Trotz der ungeheuren Zahl von Maschinen, die es gibt und die es geben wird, sind die Gattungen von Treibmechanismen nur fünf bis höchstens sechs oder mit andern Worten, auf so wenige lassen sich die zahlreichen Treibmechanismen zurückführen. Einen Mechanismus den wir bloss zum Treiben, zum Uebertragen von Bewegung, als Bewegungsträger gebrauchen, nenne ich ein Treibwerk, oder auch kürzer, wie schon oben, S. 175, im Anschluss an praktische Gebräuche geschah, einen „Trieb“. Die erwähnten fünf Treibgattungen sind:

Schraubentrieb, Kurbeltrieb, Rädertrieb.

Kurventrieb, Gesperrtrieb.

Hierzu kommt noch als Nummer Sechs der bei der Leitung schon in Betracht gekommene Rollentrieb, vergl. S. 326, dessen Einordnung sowohl bei der Leitung, als hier bei der Treibung gefordert werden kann, je nachdem die eine oder andere Eigenschaf vorwiegt*).

Die Kleinheit der Anzahl der Treibwerke ist von Wichtigkeit. Denn das Studium dieser fünf bis sechs Mechanismengattungen ist erschöpfend für das ganze Gebiet des Maschinenwesens, so wohl es sich um Bewegungübertragung handelt. Wer die wesentlichsten Treibwerke kinematisch kennt, braucht also nicht bei jeder Maschinenart aufs neue in ihre Untersuchung einzutreten; somit