Die ganze Machine steht unten mit der Büchse *A* gänzlich im Wasser, und die Platte Fig. V. hat zwei abständige Öffnungen *r*, *s*, dadurch das Wasser hinein tritt, und hernach von denen Lappen oder Flügeln *d* *f* gefasst, und gegen die Flügel oder Zwischen-Bänder *a* *b* gepresst wird, und weil es nirgend hin kann, müssen ebendieselben die Büchse *A* mit einem Deckel *X* verschraubt ist, so muß das Wasser durch die *n* *o* und *p* *q* nach *b* hinein treten, und eben durch die Rohren *l* *m* *n* *o* hervor kommen; denn wenn das Wasser durch die Öffnung *r* in die Büchse und Raum *e* getreten, so kommt der Flügel *d* und geht nach *b*, das Wasser muß durch *a*, und der Flügel *f* fasset das Wasser, wasches durch *f* eingelaufen, und treibt es nach der Wand *a* da es durch die Öffnung *p* hinein und oben heraus laufen muß; aus sors Weise geht es auch wieder zurück, nur das das Wasser durch *q* und *n* steigt.

Dieses wäre also eine kurze Beschreibung, doch viel weitläufiger und in deutlicheren Nöth als bey dem Inventore.

S. 23.

Bergiebt aber nicht hierauf die Kostenart, so wieder metallen Cylinder oder Köhren und die so mühselige Arbeit, so daß ich gänzlich davor hatte, daß in manchem großen Lande sein einiger Mann zu finden, welcher sich unterziehen würde, alles nach solcher Accuratesse, die in specie habe erledigt, zu machen. Es muß alles völlig gehen, was es nicht festet, und dennoch auch se accurat schließen, daß kein Wasser, welches viel eher als die Lüfte durchdringt, hinein kann.

Z. 9. Derjenige, welcher weiß, was es vor Mühe kostet nur einen Hahn einzubauen, einer Mann noch unerkennliche Vertheile darsoll haben, so hier nicht sind, es der nämliche eine Fläche eitliche Folg lang bereift, hingegen hier eitliche Auf, der wird so gleich urteilen, daß es ganz unmöglich ist, eine solche Machine, wie sie billig sein sollte, zu machen. Daherd will ich auch ferner weder von Ventilen, so diesen vergegen und doch nötig sind, noch von anderen Limmahden etwas gedenken, sondern damit aufhören seyn, das gezeigt, was es vor eine Beschaffenheit damit habe, und das daran alle Kosten verloren sind, absonderlich da ein solches Werk nicht mehr thut als eine andere simple Machine, die nicht den zwanzigsten Theil kostet, ja wegen der vielen Fruktion, die da nicht kan vermieden werden, auch wegen der grossen Gewalt, die zu einem so weitem Cylinder gehören, noch lange nicht so viel vermagen und nüben wird.

Das X. Capitel.

Einige Nachricht von Verbesserung der Kolben.

Da die Köhr-Künste, so vornehmlich in Saug- und Druck-Werken bestehen, die allermeisten und gebräuchlicheren sind, der Kolben aber, darinnen das vornehmste und Haupts-Stück ist, auch das weite ausstreben muß, und doch allezeit accurat anstreben soll, daß sein Wasser zwischen ihm und der Kolben-Köhre oder Stiel durc durchkan, und darneben stets bewegt und getrieben wird, so kann es nicht anders seyn, er muß sich am allermeisten aubarbeiten und war.
Cap. X. Von Verbesserung der Kolben. Tab. XLVIII. 107

wandelsbar werden. Daher haben jederzeit unterschiedliche sich gefunden, die einige Verbesserung machen, oder den Kolben gar abzuschaffen wollen, worauf die vielen Rapier-Künste entstanden sind, welche aber eben die Accurateit, ja noch mehr als die Kolben haben wollen, und gleichwohl bey weiten nicht so leichte zu machen noch zu repariren.

§ 232.

Es sind zwar schon im ersten Theil dieses Buches vielerlei Artzen von Kolben angewiesen worden, dennoch finde ich genüchtiger und vor gut, noch dreierlei Sorten in diesem Theile zu zeigen, und zwar erflch:

Einen Kolben zumachen bey Bergwerkzen oder bey grossen neum-bis zwölfzölligen Höhen, damit das Leder nicht so starke Friction machte, und doch lange Zeit dauer, auch allemahl anschlusser, obschon die Dibrie an einen Druch etwas weiter oder enger als am andern, welches die ordinaire nicht thun können.

Es kummet zwar mit einigen von vorigen ziemlich über ein, differiret aber doch sehr wegen des Zusammenkichtigens und Simplicität desselben.

Neue Manier eines grossen Kolbens.

Die Figur ist Tabula XLVIII. Figura I. in Profil und Figura II. in Grund-Ris gezeichnet.

A B C ein hölzerner Cylinder, so ebenso wie einer neuen Tafel D E überlagert, welche unter einer Ring hat, der entroid so lass als der ganze Cylinder oder Stock E F, oder nur ein Stück, als D G ist, ebenfalls aber ist weder ein Ring, der gegen das äussere Theil, als ein Keil oder Messer scharf zugezog, ferner sind im Deck oder Zeller D E 8 Löcher, davon in Grund-Ris Figura II. zwei mit T V gezeichnet sind, und auf die 8 Löcher, als T V, in Stock A B pasen. Weiter ist ein stärkerer eiserner Ring K L, aufscher unter sich etwas conisch nach X und Z und wird mit 6 Schrauben und Muttern N M beschützt, und zwischen denselben ein doppelte lederne Ringe fest gebrauchet, so mit W X und Y Z gezeichnet und ausgeschnitten, wie wie im ersten Theile Tabula X. No. 9. gezeichnet worden, hier ist das Centrum bey α, so gefunden wird, wenn ihr ein Linial an die Schräge oder Linie W X und Y Z anlegt, und die Linien W α und Y α ziehet, und dann aus dem Centrum die Bogen W Y und X Z machen, welches den Circuit giebet, womarch ihr eine Leder, so lass es würdig, schneide und zusammen nähet. Der ganze Kolben wird an eine eiserne Stange O P fest gemachet, vermeidet die Schraube und Muttern O, obenher unter P wird ein Stück Blei oder hart Holz K angeteckt, so mit Leder unterlegt ist, und die 8 andert halb-zölligen Leder T V bedecket, oder einen Deckel oder Ventil abgegür. Bey Q ist ein Anhakt, so den Deckel anhält, daß er nicht höher abweichen kann. Dieser lederne Ring kann mit dem metallenen Ring K L, sehr leicht fest gemacht werden, und leget sich in der Kolben-Röhre fest an, so mag gleich oder ungleich sein, ja wenn sich auch das Leder ziemlich abarbeitet, so füllt es dennoch allemals den Cylinder, und läßt nicht das gerinste Wasser hindurch.

§ 233.
§ 233.

In kleinen von 5 bis 6 Zoll weiten Röhren thut es sehr gut, und ist beständig, ob es aber in Küsten bey Bergwerden, da die Stiefel in die 12 und mehr Zoll weit seyn, auch der gleichen thun möchte, habe noch keine Gelegenheit gehabt, eine Probe zu nehmen, und dürfte auch denen Kunst-Stiegenern oder Kunst-Meistern in Anfang viel zu beschwerlich und allzupassbar scheinen; allein ich hoffe, die guten Dienste, die ein solcher Kolben thun würde, sollte dieses alles wieder ergeben.

Doch es kommt auf eine Probe an, die von einem Unparteiischen gemachter wird; dieses weiß ich gewiss, daß ein solcher Kolben, bey einer 6zolligen Röhre so lange gebaut, als fünf 10 neue Lieferungen auf die alte Arbeit, und die ganze Zeit, so zu reden, nicht einen tropfen Wasser fallen, oder statt werden lassen, welches vor die wenige Mühle und Kosten, meines Erachtens, schon genug ist.

Es fand auch diese Arbeit Kolben zu Druck-Werk gebraucht werden, doch das unten und oben drehfaches Leder und Ring angenähtet wird; ich habe solche von 6 Zoll Stiefein zu feuer-Preisen vor gut gefunden, niemals sie ohne Feder, weil sie nicht immer naß, als wie in Küsten, und das Leber oder füls dahero zusammen seyen, nicht so gut sind.

Auch ist wohl zu betrachten, daß der messingene Platte und Hülse D G E F so groß gemacht wird, als es möglich ist, oder das dieselbe dem Stiefeelmeist ganz erschüt, denn wenn der Kolben zu stein ist, und zwischen solchen und der Röhre c zu viel Raum bleibt, so drücken das Wasser zu gewaltig auf das Leber zwischen Y b, und überflüssigst auf das Leber, oder macht wenigstens, daß sich desso eher ruiniert.

§ 234.

Eine andere Arbeit eines Kolbens, zu einem Saugwerk ohne Ventil.

Es ist solche Tabula XLVIII. Figura III. in Profil entworfen.

Es wird erstlich ein hölzerner Kolben oder Stock a b c d r gebreitet, davon das unterste Theil b d r die Kolben-Röhre meist ausfüllt, aber ausserhalb zwischen b c und d r also ausgeschnitten ist, wie die Scheibe F Figura IV. Littera T, bey a b c e u, f. f. oben darüber bey w und x ist mit einer festen Schnur eine conische Hülse, von Leder fest ausgebracht, so hier mit g h w x bezeichnet ist, und oben von g bis h sich so weit ausbreitet, als die Röhre weit ist, und da das Leber etwas hoch, und das Spatium zwischen dem Holz von a b etwas weit entfernt, so würde die Last des Wahrers dahsele bald nieder und zusammen bleiben, darum aber sind 6 Arm, oder wenn der Kolben groß, nochmehr unten bey k und o an Stifte befestigt, und oberherr eingesschnitten, daß sie sich auf- und zutum können, oben aber bey i l m oder n, sind solche an das Leber befestigt; also kann dieser lederne Ring sich zusammen oder von einander tun, und doch nicht zu
Cap. X. Von Verbesserung der Kolben. Tab. XLVIII. 109

zusammen fallen; denn wenn der Kolben niedergetreten, und das Wasser über den Kolben gehen soll, so geheches durch die Öffnung des untern Ringes e r d und treibe das Leder den g und h zusammen, daß es hindurch kann, aber so bald der Kolben wieder erheben wird, breitet sich das Leder wieder aus, und läßt das Wasser nicht wieder zurück. Der ganze Kolben wird an die obere Stange oder Stab E F vermittels einer Schraube und Muttern befestigt, p q ist ein solcher Arm alleine gezeichnet. Den Radius zum Ersch-(Schnitt des Leders zu bestimmen, geschieht, wenn man die Linien g e und h d er- langer, und wo solche einander durchschneiden, ist das Centrum, daraus sich der Ersch zum Schnitt des Leders zieht.

Es scheint dieser Kolben von gar guten Diensten, und ziemlich beständig auch accurat zu sein, allein, daß er mißbraucht, und so fürbar zu machen, und nicht jeder damit wird zu rechte kommen können; ist auch nicht zu lagen; zudem erfordert er ein besonders zugerichtetes Leder, so nicht zu schwach noch zu stark ist, noch auch allzu weich wird; dergleiche kan nicht gut thun. Ich will hierbei zeigen:

§. 235.

Eine Schmiere, so zu den ledernen Kolben wohl zu gebrauchen.

Nehme Wachs und Terpeutin, jedes gleich viel, laß solches in einem Tiegel über einem gebrannten Feuer erhitzen, und thur hernach etwas von Dheh hinein, doch daß ihr euch nach dem Leder richtet, denn ös weich, führet ihr mehr, und dagegen weniger nehmen, in diesel zerfallene Materie legt ihr eure Leder, und läßt es recht vollschieben, doch muß es nicht zu heiss sein, sonst verdriest es; ihr thut aber am besten, wenn ihr erst mit einem kleinem Stück eine Probe macht, und solches ins kalte Wasser legt, und hernach bieget und probiert, ob es zarter oder gelinde ist, und dann eure Schmiere darnach einrichtet. Wenn das Leder zu hart ist, kann man solches erstlich nur in einer Schmiere mit Baumwolfs, etwasfett und Dheh einweichen, bis es sich durchgezogen, darauf erstlich wieder wohl auspreßt, und allein etwas Wachs zum andern mahlzusegen; Baumwolfs, Dheh und Terpeutin frühestens sich wieder ab, allein das Wachs hält es fest, nur muß man der Sache nicht zu viel thun.

§. 236.

groß, daß es den Cylinder ausfüllt, doch sich nicht zwängt. Die Öffnungen a b x
und alle übrige werden mit einem hölzernen Ring L im Grund riss mit C gezeichnet,
bezeichnet; es besteht aber solcher aus acht Stücke, nämlich vier großen, als d e f g, und
vier kleinen, h k l, als Keile formirt, (wie einer absonderlich gezeichneten) E zu sehen
haben aber ebendies alle accurat einesley Disce. Diese Scheibe C oder L wird wieder
mit einem messingen Cirkel oder Scheibe I oder B bezeichnet, solche ist vermittelfs
vier Armen m n o p an eine Hüle K festen gemacht, diese Hüle aber steckt an der Kol
sen-Stange H, und kann sich in selbstig aus- und ab-herven, bis an den Nagel r. Ges
dachte Hüle hat auch von Drach vier sehen r t u w, welche mit ihren Enden oder Einsten
in denen Löffelgen der vier Keile h i k l den x stecken, und solche Keile allemahl
gezerrn und antreiben, auch als stets die vier grössern Theile d e f g zusieh mit an den
cylinder oder Kölben-Köpfe ebenfalls antreiben, und so sich dieselben abarbeitern, vermittelst
ihrer Keil-särmigen Figue, dasselbe wieder erzeugen, also, daß dieser Ring, der starre des Leders
dienen, allmahlig gross genug bleiben, die Köpfe auszustellen, und dem Wasser den Rückgang zu
verwehren. Damit aber die acht Stück des Circulc C allmahlig zusammen bleiben,
man den Kölben ein und ausnimmt, auch zugleich den Pumpen heben und
wieder senken, auch die Öffnungen a b e u t f, schießen, so ist diesen berum eine Vertie
fung L L, gebrauchen, und ein Draht eingefangen, doch das die hölzeren Luft, haben, sich wie
sicher auseinander zu schiechen.

Und dieses wäre also die starre des Gärtnerschen gang hölzernen Kölbens.

§. 237.
Ich habe die Probe hieron an einem Modell, dessen Kölben-Köpfe in die 4 Zoll
war, gekocht, und den Effekt sehr gut gefunden, und meiner Herr Gärtnern: Jeder Kölben
könnte auch das wäre. Welches ich auch darunter hatte. Kleiner, ob solcher
bei unsern rauben und ungesehrten Köpfern, wie selbe von Gus kommen, Dienste thun
dürfte, zweisichtig genug seyn; denn weit solche Köpfer niemals recht rund sind, so wird der
holzerner Ring nicht anstechen können, auch durch die grosse Rauhigkeit des Kölben oder
Ring, als mit einer Keile, in kurzen abraffen und umtisch machen, absonderlich wenn es
einmalig rauh wird, und Schmand, Steinlein oder Sand sich darin setzen. Aber in woods
ausgebrochenen, runden und polirten Köpfen muß es notwendig guen und nützliche Dienste
leisten, absonderlich wenn das Wasser nicht allzuch drauf stehen; daher es besser bey nie
drigen als hohen Säben thun würde.

Daß aber solche in unsern Bergwerkern sollen eingeführt werden, zweisichtig, theils
wegen der ungleichen Köpfern, und das man nicht daran will solche zu bezahlen und ausseraus
gleich, theils weil die Kunst-Steiger, gewisser Urachen wegen, hölzerne Köpfe daraus belegen
dürften, und alsdenn beissen muß: Es geht nicht an. Denn wer zu einer Sache nicht
Luft hat, tan viel Urachen finden, absonderlich in solchen Wercken, die man nicht so frey
übersehen, und Tag und Nacht ihnen auf dem Arsch-Leder sehen kan.

§. 238.
Beschreibung eines Druckwercks mit hölzernen Köf-
ren, und da die Kölben perpendicular auf- und ab-
gehen, ungeachtet es durch den Hebel geschoben.
Cap. X. Von Druck-Werken. Tab. XLIX.

Die Machine ist bey gedachten Autore Tabula Z. und pag. 117. anzutreffen. zuvor hat er von der Wasser-Schnecke gehandelt, nun macht er das Transgrem auf dieses Werk, folgendermaßen:

"So nun einem oder dem andern jegliche Wasser-Schnecken noch zu setzen, und zu hoch an Gelde bedürfen; (so doch, als ein gut Karren-Gut, den man nicht zu hohen Werten, als ein Eicksecks oder rücksich Reit-Hofe kaufst, keinen Haber wohl verdient) dem folgen will ich zu Liebe eignet oder zu meinem eigenen gemütlichen Wasser-Werken, so scheide, als ich sie immer erfinden können, hier beistehende, die ich nicht für künstliche, aber doch nichtliche Werke, so mit schlechten Untaten zu zerstören sind, ausrußen will, und werden doch so viel Wasser haben, als manche durchschnittliche Kunstwerke Wasser-Kunst, die esliche, zuwenigen Geldern kosten, und doch täglich hauf für einen guten Wasser haben: Ein solches stolzes Pferd ist ja nichts bessers wert, als der Wasser es gar verkehret. Zu diesem jetzt vorhandenden Druck-Werk hat mir ein Botschke in Holland Anleitung gegeben: Der macht einen Streich mit dem einen Ende an seine Rall-Balge, und mit dem anderen Ende an die Pommern-Stange, hand auch einen Schmengel an die Rall-Bale, so den auf und nieder, und pumpt das Wasser solcherart mit meinem lustigen Zuschnauen her aus. Aus dessen Dudenm formire ich nachgebildete Dinge, wie bey der Figur auf dem Kupfer. Lie. Z. Num. 1. (ist hier Tabula XLIX. die erste Figur) zu sehen ist. Es kann bessers in ein Druck-und Zug-Werk transferirert werden, als ein Streich-Hut, der für die Sonn und Regen gut: In meinem Werke nun ist A B C D das Gehüfte, E ist die Bälle, die nur hin und her, aber niemals gar umgehen muss; F sind die beide Druck-Hülsen, Röhren, Pommmern oder Kasten, in welches das Wasser unten durch beide Ventil a einfriert, wenn beide Stangen b und d mit ihren Dieseln, so den H verzeichet zu sehen, und zu unter in den Kasten, ausgegeben: So die aber nieder, und damit werden, dafs sich ein jedes Ventil a also fort zu, und bringt das Wasser durch das Ventil e, so entweder Quadratisch oder Ablänglich ins Gewichte, Eickseck-rund oder ovalisch ist, in die Steig-Hülse, Röhren, oder Pommern G, so rechts an oder rechts der erst-gebundenen Druck-Hülsen sieht, dessen Weite nach der Propagation der Röhren einen Widerstandt länger ist, dann die Röhre selbst kein muss, (1) und weil dieses Ventil gegen der Seiten steht, und quer durch die Fläche hängt, und sich an und unter sich gehet, ist selches besser von Holz oder Leder als von Metall zu machen, denn selches ist zu schmier, es wäre dann ganz dem gezogen, auch ist bey ihm zuwechsel und noch schwächer, als Metall. (2) Die unteren Ventilen, wenn sie in der Druck-Hülse im Boden stehen, können von Metall sein; scheine also aber gegen von Seiten, muss sie eben, als vorige, in die Steig-Hülse im Ausfießen über sich ausgeben, und das Wasser einlassen, im Niederdruck der Diesel aber wiederum unter sich zu fallen, welches in solcher Beschaffenheit von allen Ventilen wohl zu werden ist. Dieses Ventil in der Steig-Hülse G kann also tüchtiger gemacht werden, daß man es von außen zu spinnen, und wiederum heraus ziehen kann, wenn es wandelnwerden möchte: beyanlegen zu Ende ein Hand-Streif, so vorgezogen, gelassen, dann man es auseinander an, wie ein solches Ventil den H abgebildet. Die Druck-Stangen b und d müssen also umgelegt werden, daß die eine bessere, die anderejenkets der Balle E auf und nieder gehe: Je großer..."
die Welle im Diametro ist, je leichter Züge und Drücke es zieht; (3) auch, je höher und tiefer die Stangen ausgesogen und niedergebracht werden können, je ein mehreres dann es efeettuirer und Wasser heber.

Damit nun die Welle hin und her, und nicht gar umgetrieben werde, macht man entweder zwei Schnüre, als g und i, (so gegen eineinander fast Winkel recht, aber beider etwas in oben angulo ansprechet sich), in die Welle, welches mit den geringen Filthofen geschweiss. Oder man macht zwei Kärner oder Trilles an die Welle zu bein, den Seiten, und ein halb gezähnt Kampf- Rad darunter, so horizontaliter geschweiss, denn treibst du das halb gezähnte Kampf- Rad die Welle E wiederum, jetzt aus, diese bald auf, die andre Seite. (4) Da nun durch jetzt erweiteres Kampf- Rad eine Achse so perpendiculärer sichet, und daran ein Trilles oder Kärner bestreitig ist, so folsches durch ein ander ganz gezähntes Kampf- Rad an einer E Lange mit der Hand getrieben werden. So auch ein streites Bäslein unter dem Werk stisse, dass man wieder dieses Kampf- Rad, des nach Trilles, sondern man macht nur an die Achse, an welcher das halb gezähnte Kampf- Rad sich stickeyt, unten ein gestreitiges Rad ohne Felgen mit Schaufeln, die gegen den Wasser getrieben sind, so hatte man ein Mobile perpetuum, so lange, als das Glas von verlassenen Windsch nen nicht umgeschossen wird.

Die Druck-Hüslen müssen also unter der Welle, als eine beiseite, die andere senkrecht, verteilt und bestreitet sich: Oder man müsste die Hüslen in der Welle also verschieben und verkehren, dass auch eine beiseite, die andere senkrecht des Stand- Baums siegen müsste, damit die Druck-Stangen recht perpendiculär darinnen auff- und nieder geheben; im Gegengeheure, wo sie drache gingen, würden die Diegel in das Holz der Hüslen einschneiden, auch wohl die eebnen Griffe ff, welche die Diegel halten, und an die Druck- Stangen bestreitig sind, brechen müssen. Die Steig-Hüslen, die um den halben Theil enger, als die Druck-Hüslen sein müssen) kann man ordnen, wie man will, man sie nur der Welle und an den Städern nicht bindern, auch schon nicht gar nahe an den Druck-Hüslen stechen; denn das Wasser kann man gar leicht durch eine Quecksilbers aus der Druck-Hüslen in die Steige-Hüsle zum Venti leiten, daran ist nichts gelegen, man trinke aus einem erkerne, der längs- oder einem weiten Bas-Blase, wenn man nur auff unser Herren Gesundheit recht richtig Bedacht genah hat.

Cap. X. Von Druck-Werken. Tab. XLIX.

hat, rodurch die Zug-Stange gehet, über dem Diesel einseht, dann sehen diese Macht,
gleich einer Jungfrau, so wohl in Haaren als eine Ruh.

Im Druck-Werck, wenn anfangs das Wasser hoch schetet, und nicht so gar hoch zu
leiten ist, so, kann ich den Ausdruck des Wassers niedriger, als in p und q, einscheiden, so
habe ich im Aussehen nur halbe Arbeit; denn die Luft des Wassers, als von e in q, ist
weit nicht so schwer zu treiben, als e r und e s, da es denn nachmals höher getrie-
ben werden muss, solche ich vor p und q ein Spindel-Brat, so laut das Wasser aus r
und e heraus, aber mit mehrern schweren Schweiß meines Angehörs, als zuvor; denn
es ist ein andres, ein Kind in der Münden, und einen Bauern in dem Back-Trog einzweigen.

Soll ich das Wasser hoch schreiben, ich weiss aber auch gern das leichte Arbeit haben,
so muss ich die Steig-Hilfen um so viel enger anlegen. (Das ganz fals.) als ich vermernet,
was ich das freiste doch allerhaufigste Tagelüfter nicht daran müde trechte, vielmehr
bei gesundem Leibe, wenn er beyde Backen noch voll an treffenden Bauern hat, sich gar
zu rohe arbeite.

§ 239.

Hierbei wollen mir so gleich einige kleine Erinnungen bemerken als, bey (1) sagt er:
Die Steig-Fähre müße kleiner sein. In aber nicht ein Miss, denn sie auch ohne
Schaden noch größer oder weiter sein kann. Oder ist eine so weit, als die andre, so fan
der Kolben oder Diesel (wie ihn der Autor hier nennt) so wohl zum Druck-als Pumpen-
Werck gebrauchet werden, doch muss das Ventil oder Klappe beym Druck-Werck sich gemas-
cher werden können.

Bey (2) sagt er: Das Ventil, so perpendiculariter hänge, so besser von
Holz als metall, ist auch nicht gut: denn Holz ist zu leichte, hebet sich durch die
Schwere des Wassers in die Höhe, und schlüset nicht an, welches kaum die schwie-
ren Metallen thun. Es ist aber besser, man machet die Ventil schreg, wie ich solches Figura
II. da beyde Höhren in Profil gezeichnet, bey e gewiegen.

Bey (3) schreibt er: Je grösser die Welle E in diametro sey, je leichtere Züge
gehe es. Allein, hier hat er sich auch vergangen, und gedacht, was ein starker dicker
Bauer-Hebel mehr und leichter arbeiten kann, als ein schwacher kleiner schlanker Knabe, so
müsse auch eine dicke Welle besser und leichter als eine dünne gehen. Welches zwar ge-
wisser maßen wahr ist, und etwas inegel thut, wenn nämlich der Hebel g und i auch
nach Proportion so viel länger gemacht werden. Dessen aber noch stark still schwerer.

(4) Das die halbgewogenen Räder nichts nagen, ist oben gesagt worden.

(5) Durch ein Druck-Werck kann man, vermittelst der Steig-Röhren, das Wasser viel
bequemer höher und absonderlich über sich bringen, aber nicht mit leichterer Mühe und we-
riger Arbeit. Er meint zwar noch ein Ventil über dem Diegel oder Ventil zu machen, aber
auch dieses hilfet zur Leichtigheit nichts. Mit einem Wort: Der Herr Schildnacht hat
sich um einen Pommerschen Fuß verrechnet.

§ 240.

Weil solche Pumpen leichte zu machen und viel Wasser geben, aber die Kamm-Venelle,
wie ein solches hier bey H gezeichnet ist, wenn sie klein fann, das das Wasser neben weg fan,
not genug Wasser würde durchlassen, und wenn sie gross, sich zu weit aussehnen muss, das
das Wasser in Steigel fan, so habe ich bey Figura III. gegeben:

Theatr. Hydraul. II. Theil.

§ 5
Cap. X. Von Druck-Werken. Tab. XLIX.

Wie man zwei Klappen anlegen kann, damit also fast der ganze Boden sich eröffnet, auch sehr viel Wasser und willig einläßt.

a, b ist der Boden, c, d die beiden Klappen mit Leder unterlegt.

Und damit man das deutlicher sehen möge, wie die Kolben-Stange an die Welle befestigt, so habe beides in Prozil gezeichnet, bey a & γ.

Da a & γ die Kolben-Stange, γ die Welle, δ darüber das Seil geschlungen, und bey γ mit einem Nager, den a & δ aber an die Stange befestigt und scharf angezogen ist, d &γ Fig. II. sind zwei starre eiserne Rings, damit die Kolben-und Steig-Röhre aneinander befestigt werden.

§ 241.

Eine andere Art von einer Appressions Pumpe des Herrn Schüdtnets.

Da schon die Art, der Köhren bereits zuvorher beschrieben worden, so habe doch solche auch mit der Stelllage befestigen wollen. Seine Beschreibung hiervon ist dies:

Das diese Machine keine Kolben-Leder und wenig Reparaturs braucht, aber auch das Wasser nicht hoch sehen kann, ist bereits schon erinnert, weil sich allzuviel verloren geben; machen der Kolben oder Cylinder nimmermehr so accurat kann eingerieben werden, dass er das Wasser hält, als ein Kolben mit Leder.

Sonsten ist hierbei nicht notig, dass zwei Ventile, als bey α und e gemacht werden; denn dieser bey α schon die Dienste alleine verrichten kann.

§ 242.

Ob ich schon beschlossen aus diesen Autoren nichts weiter anzufragen, so finde mich dennoch gleichsam gedrängt, die folgende Figur, als seine Haupt-Maschine, die er vor allem anderen erwidert und preiset, hierüber zu legen; nicht, dass selbst von einiger Consideration oder Nüßen bey, sondern weil vielerlei Fehler daran entdeckt, und denen Unerfahrenheit vor Stagen stellen kann. Auch wird sich ein und das andere in seinem Discurs finden, so es vor herauszustreichen weiss, aber ganz falsch ist. Damit aber niemand sich dies durch vorsichtigerweise, will ich meine wenige Anmerkungen so gleich mit einrücken. Er führt also fertig, und sagt:

Die allerleichteren gangbarsten Bereiche, die mit schlechten Umsichten zu zeigen, auch am längsten daurend und beständig bleiben. [Wer folgende Maschine Tabula L. Figura I. ansieht, wird leichtes sehen, dass solche nicht nur die festbarsten, sondern auch der unbeständigsten Maschinen, wegen der abwechselnden Jahre ist. Die Ursachen haben die schon eben zur Einigkeit angeschieden.] (Es müssen dann nur die genannten Pumpen mit einem Schwengel sein, so mit den Händen, aber mit aller Macht und schwezirden Arbeit, an einer Stangen gezogen werden) sind die mit einer Welle, an deren beiden Enden eine Latern oder Trilles ist, welche durch ein halb gezähnt Kamp-Kad, so samt befüger Wellen horizontaler gelegt, zwar, aber doch nicht ganz, sondern hin und wieder, und allerwege um den halben Theil getrieben wird. Wenn nun die halb gezähnte Kamp-Kad entweder an einem Well-Baum (welcher perpendicurliter gezost, woran unten ein gefülltes Wasser-Rad, so dem Horizont nach Wag-recht liegt, und mit dem halb gezähnten Kamp-Rad parallel umläuft) gezost, oder durch eine besondere Latern oder Trilles getrieben werden, an welches Welle ein Wasser-Rad, das perpendicurliter umlaufet, gezost, so hat man die beständigsten Wasser-Maschinen.
[Wenn die Luft sehr groß, geht es gar nicht an, und muß alles zeitlich brechen.] So in zwei Pompren-Köpfen oder Kästen an Stangen aus und nieder gezogen werden, es sei Druck- oder Zug-Werke, hierinnen gilt es gleich; allein die Druck-Werke (weil in den keinem Hindernde der Stangen) sind besser, bringen auch noch ein so viel Wasser, als ein Zug-Werck mit den Stangen; zuvoraus, wenn die Stange von Holz und ziemlich dick, und läßt die ganze Pompren Köpfe ausfüllen.

Die Köpfe können nur um so viel weiter seyn, so wird es eben so viel als das Druck-Werck geben; welches auch geschied, wenn sie nicht weiter seyn, nur wird etwas mehr Kraft erfordern, wenn es schnell geben soll. Welches aber bey langsauner Bewegung weniger als nichts beträger.

Da nun ein Potentat, oder ein Magistrat je Luft zu Wasser-Künst en hat, das zugleich Kunst, Mut, Werck und That, auch Luft haben, so hat eine Stadt, ja dessen Ehr, kein Neu noch Schad: Dann lasset man untersechliche Köpfe von Metall machen, die sich wohl auf- und in einander schießen, also, daß die metallene Köpfe, nachdem das Wasser hoch oder niedrig geleitet oder gehoben werden soll, können erlängert und verkürzt werden: Auff solche Art hat man ein einig behändig Werck, man wolle dann damit versuchen, als der Sarazenische Herren-Führer Maravias mit dem von Ers oder Metall gegossenen grossen Colofo und hebräischen Gößen zu Mahdis. Hier muß man aber die nachth Proportion in Luft nehmen, daß man die Köpfe nicht von üblicher Weite und grösserer Deckung anfert, als was die erste Bewegung behalten kann, damit es also die rechte Macht zu haben habe. Wenn man denn auch die unteren Köpfe um ein dritten Theil weiter, als die oberen, und also von unten auf bis oben aus, um etwas verloren zu formiren, so geht das Wasser mit weiteren Spritzen oben aus. [Dafs es besser, daß die Steig-Köpfe noch weiter als enger seyn, ist schon vielfach maß ermittet worden.]

Zuvoraus, wann unten zwei weitere Druck-Hülsen, vorrinnern die Stangen geben, deren jede ihre sonderlich Ventil hat: Aus welchen Druck-Hülsen dann das Wasser in zwei noehs darben stehende Pompren Köpfe (welche oben zusammen, gleich einer Neu-Gabel formiren, sich zu schießen, daraus nur eine Köhre wird, so ein Drütebein weniger Wasser begrenzet, als die unteren, edlen besten) gedrungen und getrieben wird, welche unten auch ihre sonderliche Ventil haben, damit das Wasser nicht wieder zurück treten kann. Sind also die Ventile in allem vier: Als, zwei grosse in den beiden Druck-Hülsen, und zwei kleinere in beiden Steig-Hülsen, die sich endlich in eine Gabel zusammen schaun, und in eine Köhre verwandeln, wie auf solche Art so eine Figur aus dem Kupfer Lit. A ad Num. I. zugetheilt habe. (ist hier Tabula L. Figur I. gezeichnet) welche man über das noch auf alterten Art und Weise verändern kann. Hier ist sie mit einer Frangel A angelegt, [soll ein halb-gespannetes Kamm-Rad mit einer Kurbel sein,] so mit der Hand in die erste Bewegung gebracht wird: B C sind die zwei Druck-Hülsen [oder Steig-]ullen. Item, D E die zwei grössten Ventile, G H sind die Steig-Hülsen, so um ein Drütebein kleiner, als die grössten Druck-Hülsen B C, in welcher Art an a b die zwei kleinere Ventile sind, so das aufgesetzte Wasser vor dem Zurückfallen ausfeiten: Zunächst fügen sich die Steig-Hülsen zusammen, und wird eine Köhre (als m) daraus, welche oben bey s und p zwei gebogene Gewinde hat, damit man es richten kann, wobey man will: welches die Luft-Gärten, Spring-Brun-
Brennen mit Sirenen, Neptunen, Wasser-Schlangen, und vergleichen, abgebildet, ein lustiges Auszahlen giebt. So könnte man es auch (wenn es auf einem hier zu gemachten Blockfaden gefilzter würde) für alle anderen Wasser-Werken in Feuer-Räthchen hochstreichlich gebrauchen, dieweil es nicht allein sehr hoch, sondern auch stark Wasser treibt, und mit den Gewinden o p, wie schon gedacht, nach Gesessen sein und wieder auf alle Seiten, auch über und unter sich gerichtet werden kann. [Das solches nicht sein kann, will unten zeigen.]

Die erste Bewegung ist im Kamp-Rad A, so hier mit einer Frangel, füglicher (wanne Gelegenheit und ein stark rinnender Bach vorhanden), [hiermit möchte eher was auszurichten sein], mit einem gestügelt Rade ohne Felgen gemacht werden kan, so bedarf man weder des Kamp-Rades A, noch des Tellers c hierzu: Denn das gestügelt Rade würde an die Welle d, so pendulariliter, gedacht es aber, welches üngleichen auch an die Welle d gesteckt, und unten im Wasser horizontaliter umlaufft: [Soll ein Horizontal-Rad sein, wie im Theater general Tabula LXVI. Figura II - VI. zu finden.] Wie auch die Schraube ohne Ende als c an dieser Welle befestiget ist; welche Schraube das Mutterlein z zwischen beiden Laternen f g fasst, und dieselben umtreibt. Diese Laternen, die sammel dem Mutterlein in der Mitte alle an einer Achse (als an r) stehen, müssten widersinnlich gepindelt sein; als, da eine Laterne dichts Spindeln hat, sind dagegen an der andern Seite keine: Der Ursachen halten sie in einem tempo die eine Stange b aufmaßs heben, dagegen aber k niederbrucken. [Die verglichen unter Tabula XXXVIII. zu finden.] Da denn beide Stangen b und k zu untert lederne Stöfel von 4, 5, 6 oder mehr Pfund-Sohlen haben müssen, welche im Ausfischen die Ventile unten öffnen (dieweil Natur kein vacuum leidet, es müs die ledige Stelle entweder mit Wasser, Feuer, Luft, Erde, oder was von und aus der Erden kommen, [vielleicht auch noch etwas anders] erfüllt werden) und also das Wasser nach sich ziehen. Wenn nun die Stangen wiederum nieder, so gehen die Ventilen wiederum zu; Denn muß sich das Wasser, so durch die lederen Stöfel (vergleichen einer bei z abgebildet ist), getrieben in die Stein-Hülse G H, durch den Ventilen a b dringen, da es von nachfolgendem Wasser bis oben hinaus gedrungen und getrieben wird. Aus der Linne f laufft es nach maßs in die Linne f; und wiederum so tieff hinunter fallende als hoch man es zu leiten und wiederum freigend zu machen begehret. Um das halbe Schwung-Rad s [ist nur eine Scheibe] gehe eine Kette, welche oben an beiden Stangen b und k gehackt ist, die also hin und her, oder auf und nieder gehen, wie die widerstands gepindelten Laternen die Stangen b und k, so durch ihre Zähne gefasst, ziehen. Damit auch die Stangen von den Laternen nicht abweichen können, treiben sich solche an die Rollen w an. K sind in Grude des Wassers zween gezähnte Körbe, damit kein Unrat von Schlamm, Sand, Steinen, Holz etc. in bende Mund-Locher M einlauffe, und diese aber verstopfte. L ist der Fuß der Stöcke, worin beide Druck-Hülse B C fest gemacht, in welchem sie unten mit ihren durchlochten Böden in benden Mündungen M hervorgehen, und das Wasser an sich nehmen. Das Gelege n verkehret ein jeber wohl, wenn er schon kein Zimmermann gewusst ist. Dennoch ist auffällig der Figur in sonderlichen Abweisen t der lederne Stöfel an den Stangen b und k zu unters: Item t f
ist das pyramidalische Klippelein, [Klappe] so im Venteil auf- und nieter- gehet, in dessen Mittel dieses Klippeleins Eiernlein gefasst ist. Item x ist das ganze Venteil, wie es auswendig bestammen anzuschreiben: Denn ist y eine Klippe von Leder zu gemeinen Ventielen in hörsernen Pompsen. Endlich z ist eine andere Art Ventielen mit einer platten Klippen. [Weil die Klappe x so gross und weit als die Klappe, wie soll das Wasser neben weg kommen?] Das übrige wird ein Verständiger wohl selbst vertheilen, er hatte denn das Podagra: Der kann es aber im Eisen, und noch besser im Eise betrachten. Diese metallene Pompen-Nohren kann man so vielsamig oder so eines weiten Diametri anordnen, als es einen gesellig, aber doch auch, nachdem die Bewegung, die Stärke des Wassers zum Trieb, und die Thiere zum Zug, oder die Menge der Menschen ist. Der Bissen muss nicht grösser sein, als die Gurgel, sonst bleibt er dem Bielsfaus im Halse bestreken. [Hier sollte der Autor gewissen haben, wie es zu berechnen nach jeder Stärcke. Aber da fehlt es auch, und ist die Kunst alle.]

§. 243.

Der geistige Leser wird hoffentlich aus dem bisherigen so viel erlernen haben, dass er ohne weiter Vennern gar leichter sehen kan, das dieses nicht eine der leichsten, sondern der schlechtesten und elendsten Künste ist, und die dazu auch seltbar und deschild wandelbar ist. Ja er wird ferner vertheilen können, dass Herr Schmalzrecht, welcher sonst gemis in vielen curiösen Dingen gute Erfahrung gehabt, und also nicht ungeschickt genrofen, dennoch in Wasser, Künsten nichts fundemaites practizirt. Wie denn ferner aus folgenden erheber, da er namentlich des Ramelli Blasbalgs, welchen wir Tabula XLVI beschrieben, und aus trivjigen Gründen verwerfen, hervorhlich recommendirt, mit diesen Worten: In Hervn Augustini Ramelli Schaf-Kammer von Wasser-Bercken gefasst mir bey der 65 und 66sten Figur das Druck-Berck mit den Blasbalgen (so safft in Form einer Trommel) über alle massen wohl; denn es kan mit geringen Leisten gemacht und erhalten werden: Der Blasbalg oder die Trommel stehet oben gleich über der Pumpen-Nohren. Wenn der Blasbalg nun an einem Schwengel aufgesetzt wird, greift er das Wasser durch das Venteil (so zuoberst in der Pumpen-Nohren eingefasset) in die Rinne, und drucket es dann im Niederdrucken hinaus, welche Rinne ingleichen ein Venteil necht der Pompen hat. Das blasit sich dann besser als Klein-Ruus aus der Düste, so einem die Augen, Mund und Nase voll staubet. [Ja, wenn Wasser so leichte als Ruus ware.]

§. 244.

In Holland setzt man insgemein drei Pippern oder Hopf-Stangen, unten voneinander gesperret und oben zusammen gebunden, in die Erden, hinten oben einen Stricke, und unten daran eine Gieß-Schaufel, welche oben mit einem halben Deckel gegen dem Stiel zugeheftet sein, so trägt der Strick die Schaufel und das Wasser, der Mann aber thut nur den Schwung. Solcher Gestalt macht man also ein Gerüste, und einen Raufen über den andern, und guckt also immer der unterste dem necht oberst das Wasser zu, so hoch, als man es immermehr hegeht. Dieses kann man auch als continuiren bis über den Berg Olympos und noch weiter hinaus.
Cap. X. Von Druck-Wercken. Tab. L.

§. 245.

Weil Herr Schildmecht noch ein anderes von Ableitung des Wasser beyem Festungs-Bau, als ein Practicus schwager, so will solches, so gut, als es gefunden, mittheilen. Da lauter es nun sener:

„Wenn man nun unter sich einsassen, und in den Wasser-Graben eingeschlossen,
, so tief, daß es einem genugsam zulassen kann, und daß die Wasser-Kunst, es sei uns Art
, sich, nicht aussichtsreich, das Wasser in becherer Zeit auszuschaffen, oder das zur
, fällige Quellen im Graben verbanden, die mit in dem Kasten zugleich und zugleich heh
, sen, so nehme man Säuren und Säden, zuerst ihre Huren daran, denen gebe man
, lebende feuer-Eimer in die Hände, und laffe sie also gießen, daß sie die schweren schwimmen
, ent. Kenne sich diese letzte von Wasserhut mit Stricken an einer Welle, die in weiben
, Gabel-Bäumen gelegt, und gleich einem Brunnen-Schnecken an einer Franzel oder Kern
, ganz um, oder ihn und der gezogen werden kann, gebrauchen, verwehre man ihnen
, solches nicht, denn neben ihrem eigenen Weilen, und selbst verwöhnt Lust, machen sie, ne
, nen die Arbeit auch leichter, und geber alles bessir von statten, wenn sie sich eine solche Magd
, mehr man taugen als müde ihmman miß.“

„Kan man das Wasser in Rinnen ablösen, wie schon oben in diesem hierhergebrad
, Capitel No. IV, gesagt, so ist zins zwar das allerschlechtest, aber daraus auch das
, allernißliche Werck, denn hierzu bedarf ich weder Leute, Pferde, Dosen, Efe, noch
, große Hader, so vom Wasser getrieben, und kann also viel Geld im Verbrei ersparen:
, (Was bereitet wird, daß das zins nicht gehe, und das sich selbst erweist, daß man
, im Saft nicht schaffen:) Dies kann in jedem Sinne, wenn die Festung besser als der Land
, Grund liegt, gar leicht geschehen; zuerst, wenn untern darvon ein langer breiter
, und tiefer Graben ist, weder man das Wasser aus dem Graben von der Festung leiten
, kan: Also verdient ein solcher kunstreicher Künstler einen starken dienen Strick, der sich
, des Ortho foßfarbicher Wasser-Kunst gebräuchlich, wenn er das Wasser ohne die solche
, ablösen könne, und solches mit schien Punchen überschaffen würde.“

„Das man nicht die Zeh und Rechnung ohne dem Macht, und sich untersauss
, das Baltische Meer, (so weit kleiner, als das Oceanische ist,) auszuschaffen; als
, wann unsersehe viel Quellen in dem Graben, auch unter dem Wasser verbreite Spött
, Pfahl, oder sogenannte Schwaben-Schmáke geschlagen waren, so das Wasser aufhal
, ten können: So stiebe ich den nach, denn den Tage leitet es der Bauer schwerlich,
, das man ihm den Hut vollzüht, man schüttere ihm dann solches voll Duschen,) einen
, Pfahl unter unserm von Plumpwierner, daß er dem Graben gleich und fast verbreite ste
, he, so kann ich durch ein Schim-Loch, damit mir der Kopf nicht mit Seife ausgeglichen,
, feinster Bley gewaschen werde, alleswege leicht und richtig sehen, ob sich das Wasser
, im Graben verringere und säße. Geschleppt folches, so plumpse ich tracker fort: Blei
, „bet
Cap. X. Von Druck- und Werten. Tab. L.

§. 246.

Wie eine Kurbel durch eine andere Kurbel umzutreiben, dass sie rund um geheb.

Jhr findet dergleichen Tab. XLIX. Fig. V. da eine Kapell-Kunst, welche die Machine Pappenhaimiana genannt, und Parthe I. Hydraulica Tabula XLVI zu finden ist, das durch beweget wird, da die ganze Machine A im Wasser steht, B aber die Kurbel ist, und weil solche im Wasser mit der Hand nicht wohl umzutreiben, noch auch ein Schwing-Rad anzubringen ist, so ist beständig über das Wasser gefangen und das Schwing-Rad mit C D, dessen Hand-Kurbel mit E, die andere Kurbel, so die Machine treiben soll, mit F gesehen, und damit die Kurbel F, die andere mit B gesehen, umtreiben kann, so ein Holz, beiser ein Eisen, FG B gemacht, so an beiden Enden an denen Wogen beider Kurzeln stecket, in dessen Mitte eine Öffnungij ab Figura M gemacht ist, darinwach ein runder Pfosten GH, so bey H in der Hose sey, stecket das Eisen, FG G oder M, welches daran auf- und abgehet, und sich wendet, die Kurbel B allemaß auf Eickel zu brechen. Das Wasser steiget durch die Höhe K in die Höhe.

§. 247.

Was es vor Beschaftenheit mit der Kapell-Kunst hat, ist in Theatro generali schon gesagt, hier will, wegen der Invention der Bewegung, nur melden, das solches zwar practicable, alleine es arbeitet, wie schon bekannt, die Kurbel nicht nur imequal, sondern auch das Eisen FG machet noch eine viel grösere Ungleichheit, weil der Nagel GH nicht allemaß in der Mitte ist, sondern einmal an diesem, das andere maß am andern End, und dahero das eine Ende kurz, das andere lang, weisch wie Hindernis, womdie Last etwas gretz, verursacht wird: dahero, ohne die höchste Neith, solche Machine nicht rathen wolte. Es bringt zwar das Schwing-Rad solche Ungleichheit, wenn es gross und schwere, wieder niemals in die Gleichheit, alleine es ist allezeit besser, wenn es schon gleich ist, als wenn es erst soll gleich gemacht werden.

§. 248.

Wenn ein Brunnen vor einer Thüre oder sonst im Wege steht, wie es zu machen, dass man dessen Gebäude und Machine auf die Seite bringen kann.
Es trägt sich dessfels zu, absonderlich den Anlegung neuer Gebäude, daß ein guter Brunnen in die Thür oder sonst im Wege komme, daß man das ordentliche Gebäuse nicht auffegen, und den Brunnen brauchen kan. Solchen abzulassen, daß man dem Brunnen behalten, und das Gebäude hinzufügen kan, wo man will.

§. 249.

Ein Pump-Werk mit einem einzigen Ventil.

Man kan der den Zeitling, Rucklern, und andern, etliche Pump-Werk, da in die Röhre ein Stoss oder Cylinder, der die ganze Röhre ausfüllt, füget, und hat des Kolbens auf und ab bewegen wird: Keiner aber hat beschrieben oder deutlich angegeben, wie es gemachet ist; weil ich nun von etlichen darum befraget worden, so habe die Beschreibung hier mit beybringen wollen.

Tabula L. Figura III. ist A B C die Kolben-Röhre, B C der Boden mit dem Ventil oder Kappe, D E F G ein Cylinder oder runder Abst, so die Kolben-Röhre A B C so viel ausfüllt als möglich ist, G H eine kleine Flüme oder Vertiefung in dem Cylinder, von Ende oder Boden des Cylinders bis über die Röhre A I an H, etwa eines Zells weit und tieff, wie Figura M in Grund-Stif zu sehen, K L B C das Wasser darinnen die Röhre sichtet. Die Operation geschicchter auf folgende Art: Wenn

Theatr. Hydraul. II. Theil. 59 der

Die Figur hiervon zeigt sich letzteres Tabula L. Figura IV.

Da A eine rundr Scheibe oder Wellen die in Diametro so groß ist, daß ein Quar oder ein 6 Theil der Peripherie so viel beträgt, als der Halb des Kolbens seyn soll, derselbe hat auf beiden Seiten keine Zapffen a, b, c und d, Em näm Kolben-Stangen, so in die Nohren F und G geben. An die Stang B C ist bey B ein Seil ode Ketze, mit Hülfe eines Krages feste, und gehet unten bey c um die Scheibe, und wieder auff der andern Seite bis ins d, da es an der Stange D E bessrig ist. Ferner ist ein Seil bey c bessriget, und gehet oben bey b über die Scheibe, und auf der andern Seite wieder herunter nach E, alda es auch feste ist. Und damit sich die Seile auf der Scheibe nicht brechen oder rutschen, ist eines oder alle zwey bey b und c mit einem Nagel bessriget. H I ist ein doppelter Hebel oder Wage, da auf jeder Seite zwei oder mehr Personen ziehen.

Die ganze Machine an sich selbst hat weiter keinen Vortheil als ein ordinarer doppelter Hebel, nur das hier die Kolben-Stangen allenfalls perpendiculär auf und ab gehen, welches bey jenen nicht geschieht.

§ 250.
Tab. L I.

Maschine in Denkergewachsen
Haufe zu Dresden der Wasser
auf dem Altar zu bringen

Gewicht der Stifte
und Holz

Gewicht der Buchse
und ihrer Breite

Grund Riss. Per
Stifel u. Buchse

Grund Riss. Per
Stifel u. Buchse

Koppe So.
§ 251.

Zum Beischluss sollen noch zwei Maschinen angeführten werden, die zwar sonne bey denen Kurbel-Röhren ihren Platz haben einnehmen sollen; weil aber die Zeichnung zu solcher Zeit nicht erhalten, bis hießer müssen verhahret bleiben.

Ob es gleich nach denen angewiesenen Fundamenten eine solche Machine zu errichten, die das Wasser auf eine solche Höhe treiben, so habe derlich sein Bedenken getragen, die beyde, die wirklich vorhanden, und das ihrer schon lange praxirirt haben, nach deren Proportion und Maass-Stab, deutlich zu beschreiben.

Die eine wird von einem Menschen, die andere aber durch den Abfall des Wassers aus dem Holz-Trog getrieben; beyde aber bringen ihr Wasser in die 38 Fus oder 29 Dresdner Ellen hoch.

§ 252.

Eine Machine durch welche das Wasser in dem Dinglingerischen Hause- zu Dresden auß die beyden Altane gebracht wird.

Es beschreitet aber diese Machine, welche hier Tabula LI. zu finden, in einem Drucks Werck, mit drei Stießliab A B C, woraus das Wasser in die Steige-Röhre D wechselseitig hergebracht wird.

In diesen Stießliab werden die Kolben-Stangen E E E mit der dreyfachen Kurbel F auf und nieder getrieben, so an dem Steinh-Rad G sich, welches das Getriebe H durch Hülfe der Kurbel F und des Schmung-Rades K bewegt.

Sodann die Zapfen des Steh-Rades und der dreyfachen Kurbel, als die Welle des Getriebes, liegen auf dem Geschle L, in dessen innem Raum die Stießliab mit der Steige-Röhre befestigt sind.

Sodann Geschle Festeich in dem funffsernen Kessel M, welcher allernächst bis an die Linie a b, oder die in dem Grund-Räts angedeutete Röhre e, voll Wasser, welches durch die andere N einmewirmt und, wo notig, durch den Hahn P wiederum kan abgesogen werden.

Durch den kleinen Raum O zwischen denen Stießliab, und dem Boden des Kessels, gelangel das Wasser zu denen Ventilen R.

Jeder Stießliab hat eine Gurgel s, und an dieser, über das erste noch ein Ventil T, so zusammen in die Röhre U verschlossen, auf deren Deckel die Steige-Röhre D steckt.

Besagte Kolben-Stangen gehen in Gewinden V an ihren Kolben W.

Weil nun das Wasser, so in dem Kessel über denen Stießliab festeich, nur allein auf gemelderten Leder des Kolbens liegt, so brücket solches, wenn er in die Höhe steigt, dieses an denen Seiten nach seiner Schwemheer nieder, und füllt also durch den unter dem Boden X auf
124 Cap. X. Von Druck-Werken. Tab. LI.

auf solche Art entstandenen Raum zu oben der Zeit in den Stielfel herunter, da es durch das Ventil R hinauf tritt.

§. 253.

Die Weite eines Stieles und der Steige-Köcher beträgt 2 ½ Zoll.

Die Höhe des ersten erstrecket sich auf 11 Zoll, der legteren aber bis zu dem Ausguss 90 Fuß, oder 43 Dreßdenische Ellen.

Das Stießrad hat sein Radius 6 Zoll, und ist leichte Peripherie 36 Jahre, in welches ein großfahigstes Getriebe gezügelt.

Der Radius des Schwung-Rades ist 2 Fuß und 2 ½ Zoll.

Der Radius der Kurbel 12 Zoll.

Und endlich der Radius des Circulus, welchen die drehende Kurbel beschreibt, nur 4 ½ Zoll.

§. 254.

Diese Machine kann auch an solchen Orthebern gebrauchet werden, also das Wasser noch höher zu bringen, und ist, wenn es nicht gar zu viel beträg, keine besondere Veränderung, ohne die Vergrösserung des Schwung-Rades nöthig; man kann solcher zwar auch durch Ver- längerung der Hand-Kurbel bestimmen, und die Last erleichtern, aber wohl hernach der Cirkel zur Bewegung des Uterus allzugross wird, dafs er es dem Arbeiter ziemlich beschwerlich fallen.

So viel mir thansend, hat Herr Gärtner mit eben dieser Machine das Wasser noch viel höher getrieben, aber auch nur ein großes und schweres Schwung-Rad gebrauchet.

Sonst if zu mercken:

Dafs diese Machine für wenigen Platz einnimmt, auch solche ihren Stand in einer Mauer hat, und mit einer Triir verschlossen ift, damit sie niemand im Wege steht, noch weniger vor seine Nachricht davon hat, solche albe füchter.

§. 255.

Das allernmerwürdigste bei dieser Machine ift der, ganz besondere Kolben.

Erstlich, weil er ganz simpel.

Zum andern, weil das Wasser von oben hinein durch selben leichter fallen kann, und dahero unten sein Ventil im Stießloch nöthig ift, mustern dennoch jeder Stießsel sein besonderes ift.

Zum dritten aber, als das Vorverhut ist, dafs das Gewinde oder Gesinde der Kolben- Stangen E V ganz unten auf dem Boden X ausstehet, dahero der Kolben nicht so leichter kann auf die Seite getrieben werden, als wenn selbes noch über dem Kolben stehet, wie solches bisher von mir erinnert worden.

§. 256.
Die andere Gärtnerische Machine, da vermittelst des ordentlichen Röhren-Wassers, so im Halse ist, das Wasser auf 38 Fuß in die Höhe getrieben wird.

Bes dieser Machine, Tabula LII. Figura I. besonders, ist wiederum ein Druck-Werck, aber nur mit einem Stiel A. und einer Steige-Röhre B.

Die Stange des Kolbens C hängt an einer Kurbel D, so ein Wasser-Rad E treibt, welches zugleich oben und untersätzt, indem das Wasser aus der Röhre F durch den Triebwerck C auf das Blech H und hiervon auf die oberen Schaußeln I des Rads schiesset, kommt es in seine Bewegung.

Dieses Rad ist mit einem Gehäuse K umgeben, und liegt mit seinen Zapfen in denen Pfannen L und M; davon eine an dem Rande des Gehäusse angemacht, die andere aber in einem starren Blech, so an dem Stab N angehängt, welcher an gedachten Gehäuse fest.

Das Wasser, so in P abschiesset, fällt allschalb bey Q in den Cylinder R; das übrige aber, so an den Seiten des Gehäusse K nach und nach abwird, durch die Deßnung S S in den Raum zwischen diesen und dem Rande des äußeren Gehäusse T; aus welchen es endlich durch die Deßnung U in das Gefäß V, und aus diesem durch die Rohre W wiederum ablaufs.

Dieses so in dem Raum zwischen diesen Cylinder R und sein Gehäuse zugleich kommen, man durch die Höhe Y Y wiederum in diesen treten.

Der Stiel A ist mit einem Ventil verschen, hingegeben der Kolben Z, so an seiner Stange in einem Gewind hängt, eben so beschaffen als dieser, so bey der ersten Machine beschrieben.

Dahero muss das Wasser, so in dem Cylinder über dem Stiel fieset, in diesen sinken, wenn der Kolben in die Höhe steiget, und bey seinem Niedergehen in die Steige-Röhre bis zu dem andern Pfannen hinaus getrieben werden.

In der Steige-Röhre ist eingefügt über dem Triebwerck C ein klein Ventil, welches verhindert, das das Wasser, so einmal in die Höhe gestiegen, nicht wiederum zurück laufen könne.

Der Stiel, der Kolben und die Steige-Röhre, nebst der andern Röhre F sind von Messing.

Der Krantz des Wasser-Rads, mit seinen Schaußeln, ist von Blech.

Die Schaußeln bestehen aus Kupfer.

Der Stiel und die Steige-Röhre sind in Lichten ½ Zoll.

Die Höhe des ersten beträgt 3½ Zoll, und der andern 38 Fuß, oder 29 Dresdner Ellen.

Der Radius der Kurbel ist 1 Zoll.

Das Gehäuse E hat zu seinem Durchmesser 2 Fuß, und das Rad 22 Zoll, an dessen Peripherie 64 Schaußeln.

Theatr. Hydraul. II. Theil. 31
Als einen Anhang
will beifügen

Eine besondere Art einer Machine: Wie zu erfahren, was vor Kräfte die Menschen oder Pferde bey einer Machine, und absonderlich den Hesper- oder Kreisen, oder da die Pferde an einem Hebel oder Arm angespannet sind, haben, dergleichen Tabula IV. XII. XIII. XXXI. XXXII. in diesem Theil zu finden.

§. 257.

Ferner dienet auch solche zu erfahren:

Ob die Pferde im ganzen Umgang äquale Arbeit haben, und wie viel solches beträgt?

Es bedarf solche, nach besehiger Figur, in einer starken Pfanne A B von unge- fähr 4 bis 6 Ellen lang, die wird auf dem Schwengel oder Hebel, daran die Pferde ziehen, feste gemacht, an beliger aber ist eine ziemlich starke Stange, von 2 bis 3 Zoll stark, von guten trocknen Birken oder Lämm-Hölz, feste wird nun bey B mit zwei Ringen fest gemacht, doch daß sie bey C vermittelst eines Reils oder Unterlage abgetrieben wird, und bey C weit abschees. Um die Gegend D wird ein Seil angeschlungen von etlichen Ellen als D F, da man bey E die Waage zu denen Pferden ansetzen. Weiter wird auch ho- rizontal ein Bret F G aus der Pfanne A feste gemacht, darauf die Stange C d ruhet, und sitz und her-gehen, auch das man an gewissen Abteilungen merken kann, wie weit sich die Stange nach E gebeugen; denn die Stange muß so stark sein, daß solche die Pferde kaum Sinnen der Maschinen nicht viel über A hinaus biegen können. Doch muß solche auch nicht zu stark sein, daß sie sich gar nicht biegen sollte.

Wenn man nun eine Zeitlang die Machine treiben lassen, und wohl gemercket, wie weit sich die Stange C d gebogen, so kann man die Pferde loslassen, und nur das Seil D E über der bewegliche Scheibe G gehen lassen, und so viel Gewichte anbringen, bis die Stange sich auch auf das angemerkte bieget. Dieses Gewicht ziehet nun klares Anzeigen, wie viel die Pferde Krafte thun müssen, item, ob die Stange bey dem ganzen Umgang ei- nerley
Die andere Machine in Hrn. Dinglingers Hausse

Fig. I.

Profil nach der Breite

Fig. II.

Fig. III.

Kupfer st.

Tab. LII.
Cap.X. Von Krafft-Proben. Tab. LII.

neren Biegung behält, oder ob sie sich bald viel bald wenig biegen, und dassere die Pferde bald viel bald wenig zu thun haben. Durch diese Machine kann man auch erfahren, wie viel die Pferde mehr zu thun haben, wenn die Kellen neu geliebert werden, als wenn sie sich abgeschlissen. In Summa: man kann gar viele Experimenta machen, die sonst unterbleiben müssen.

§. 258.

Eine andere Machine oder Krafft-Probe.

Sie ist Figura III. Tabula LII. gezeichnet.

§ 259.

Zur Abschluss der Hydraulica erachte tödlich zu sein, einige Anweisung von Maschinen-Besten, und absonderlich von Wasser-Künsten, zu geben; thöts was man aus diesen beiden Theilen des Theatri-Hydraulica-rum Machinarum zu erlernen, thöts wie man solches gebrauchen, thöts auch wie man sich so wohl bey Untersuchung der Verhältnisse und Eflacks, als auch bey Erbauung oder Anrichtung einer Machine zu verhalten.

Obwohl hier nur die von Wasser-Künsten gehandelt wird, so sind solches eben die Künste, darüber sich heute zu Tage so viele bemühen, auch jeder was besonderes und besseres aus Tage-Eicht zu bringen verhebt, so dass sein Quarral, geschechte ein Jahr vorher streicht, da nicht neue Werthschläge mit grossen Lob-Streichen hervor treten, und nichts als unbefriedigender Nutzen, Vorteil und Profit verbrochen wird. Allein wie dies bisher noch allegiert am Ausführung-Ende geschrieben: Parturient mones nascentur ridiculus mai. Welches besonders schon so viel mit ihren grossen Schaden und Schimpf erfahren müssen.

§ 260.

Untersucht und betrachtet man aber diese Leute, welche sich so grossprecherisch und abzuweisend bewart thun, so sind es meistens solche, die offener noch nicht die theoretischen Anfangs-Gründe in der Mechanic recht inne haben, und wollen doch grosse praktices abgeben. Einige haben zwar die Theorie gar wohl innen, sind auch in praxi so gar unbesingt nicht, alleine, aus grosser Einbildung überreiten sie sich, und überlegen nicht vorher alle Umstände, welche bey ihrer vorgeschlagenen Verbesserung sich ereignen, und ihnen also Ungesetzes machen können. Ja thöts sind so unbefam, dass sie wohl gar dasjenige Werk, so sie zu verbessern vorgaben, nicht einmal selbst, geschweige dass sie wüssten, was die Machine thun soll, oder auch schon wirklich efferziere. Davon ich unterschiedliche Grémeppl aufführen könnte, vermuthen aber, diese einige wird genug sein, müssen es sich wießen: Als wenn ein gewisser verkopter geistlicher Ordensmann sich an einem bekannten Hof bey einem hohen Minister anspricht, und mit vielen Umständen vortrug: Eine gewaltige Verbesserung des Maschinen-Bestens anzugeben, wenn ihm ein Recompens [der gewiss recht annehmbar war] labor accordiert würde; welches ihm auch, auf Recommandation des zudiensten grossen Ministers, zugefallen, und Versicherung darüber gegebene, (wieweis es den hohen Collegis und andern Ministri grossen Mühe, ja vielen Verdruss machete.) Als man aber diesen mechanischen Heben an Ort und Stelle führte, wo die Verbesserung verlangt wurde, und er die schon vorhandene Machine und deren Eflack ins Gesicht bekam, so überfiel ihn ein solches Schrecken, dass ihn seine grossen Künstle auf einmal zugleich entfol, und nicht wusste, was er sagen solte. Daher in solcher Besfrührung willig gefunden: er hätte verglichen gewaltiges Werk, niemals geschehen, auch sich nicht eingebildet, dass man schon so weit kommen sey, die Wasser aus einer solchen Tiefe und in so grosser Quanität zu heben; Ein solches Werk wüsste er nicht zu verbessern. Und damit war der Tank auf einmal aus.

Hatte aber dieser Entrepreneur sich zuvorher die Sache bekannt gemacht und gesehen: wie weit man bereits schon ohne seine eingebildete Künste gekommen, so würde er sich nicht
Discurs vom Machinen-Wesen. Tab. LIII.

nicht so profitteren, und so vielen hohen Bediensteten und Collegis, ja dem Lande-Herrn selbst behördlich gefallen sein.

§. 261.

Dergleichen Comedien werden noch öfters gespielt, machen es statt täglich Leute genießer, abhanden bei diesen Ruhmsthäfen Zeiten, welche gerne was reiches, und zwar mit leichter Mühe, oder gar mit Müßiggang verdiennen wollen. Zudem auch welche sich finden, in Hoffnung einen guten Boteheil dadurch zu erhalten, die solchen Leuten glauben, theils weil sie nicht verleh'en, es die Proposition möglich, theils weil der neue Künstler seine Sache nicht offenbaren, und lautte große Geheimnisse daraus machen, theils weil es was neues, was besonders, was unerhörtes sein soll; denn die allermeisten wollen nur was neues und künstliches haben, und sehen solches denn noch wohl, ob es schon lange nicht so gut dem alten weit vor; daher ich auch gerne glaube, das etliche über meine Thetora, und abhanden über diesen Theil, sich beschweren werden, weil es nicht so viel neue und ganz besondere Maschinen, die auch sonst gar noch nicht bekannt sind, anstreben werden, wie sie sich eingebildet und gehofft. Allein solche Leute lernen nur erstlich die alten Maschinen und Inventiones recht erkennen und beurtheilen, daß es nicht auf die Vielseit, sondern auf den rechten Gebrauch und Anwendung ankommt; ja sie sehen, daß die neuen, die hier und da mit angefertigt sind, gar selten, es feh' denn etwa wegen der Simplicit und Beschwerlichkeit, etwas zum voraus oder besonders haben, und das mit denen alten wohl eben dieselben, was die Kraf t und das Vernißen anderstifft, auszüchiren ist, und kommen meint nur dar- auf an, daß die Kraf t recht applicirt, und der Friction abgeschlossen werde. Allehe hier- auf dürfte gerathen werden: Ob denn nicht neue Maschinen zu erfinden, oder die bisherigen zu verbessern, daß ein mehrhes davon auszüchiren. Und so nichts diesem zu hoffen, warum man noch täglich auf neue Inventiones bedacht ist, und nicht nur eine so große Menge, so weh von alten als auch vieler neuen anführet?

§. 262.

Die Antwort, aus die ersten Puncte, kann so wohl nein als ja sein. Versteiner kann es werden bey den einfachen und simpelen Gebzeugen, als dem Hebel, Halb, Scheibe, Schraube und dergleichen einfachen Gebzeugen; denn ein einfacher Hebel, wie eine Schnells oder Heu-Baage, ist eine ganz simple Machine, es können aber mit einem einzigen Centner wohl 50 Ja bis 100 Centner nicht nur in Equilibrio erhalten, sondern auch solche Last mit Zulung nur etlicher Lecht, wenn es auf das kurze Ende oder die Last gelegter wird, bewegt werden (wie solches an der von mir verfeinerten Heu-Baage in Leipzig zu ersehen) und ist eine solche Baage oder Machine in Ewigkeit nicht zu verbessern, allein wohl schlimmer und säuer zu machen, wenn einer die besonderen Porteheil nicht weiss. Und eben diese Bewandtriss hat es auch mit dem Halb, Halb-Schlag, Zug und andern, welche nicht klein, rund, und glatt, und die Herren und Scheiden sein lang und gross gemacht werden, als das allzeit sehr wenig in Praxi der Kraf t abgehen wird, als was die Theorie oder Rechnung lehret; und aus solche Weise ist keine Verbesserung werden nöthig noch mög- lich, und sein mehrhes Effecz zu heffen; indem auch diese simple Machines mehr thun, als Zahn, Getriebe und die wechselhuffe Schraube ohne Ende, welche schon eine viel stärkere Friction und Widerstand haben; denn die Last nur von 50 Centner, die von einer Schraube gehoben wird, in Bewegung zu bringen, werden nicht etliche Lecht, sondern viel Pfund nöthig sein, obkon das Hegen Gewicht nach der Theorie oder Proportion der Schraube und Aufstand der Kraf t völlig vorhanden ist.

Theatr. Hydraul. I. Theil.

K# §. 263.
§ 263.

Wie es nun eine pure Unmöglichkeit ist, eine einfache Maschine davon zu bringen, daß sie auch nur einen einzigen Gran mehr Eifekt als die andere oder der gemeine Hebel mit einer scharfen Unterlage macht, vielweniger ist den zusammengesetzten und durch viele Räder, Schrauben und dergleichen verstärkten Maschinen, etwas zu erhalten; denn diese auch mehrheitlich mit großer Last beschwert werden. Und weil sie vielmehr Zapfen, Zähne, Getriebe und Flächen haben, die sich schleifen, sichepen und stemmen, so folgen daher eine so viel größere Hinderniß und Widerstand der Kraft, daß sie vielweniger, als die Theorie ausweist, verrichten kann.

§ 264.

Dieser Widerstand, insgemein die Friction, von denen Deutschen und Werks-Meistern das Stocken oder Zwängen genannt, ist die vorschnelle und Haupte-Ursache, warum eine Maschine nicht so viel tut als die andre, oder als die Theorie und Berechnung ausweist.

Die andere Haupt-Ursache aber ist eine ungeschickte Application der Kraft. Wer nun geschickt ist die Friction seiner Maschinen zu bemessen, und die Kraft recht nach der Kunst zu appliziren, der hat den andern Punct der Frage:

Ob die Maschinen zu verbessern?

auch mit ja beantworten und vor einen Kunstversändigen passiren.

§ 265.

Das uns die Friction die meisten Kraft raubet, ist auch an einem Last-Wagen zu sehen; denn es er schen mit 50 ja 100 Centner beladen wäre, sollte man doch selbstigen mit einem Finger auf einem reich gleichen und glatten piano horizontali fortziehen können; allein das es echte starke Pferde kaum vermögend, verursachet bloß die Friction, die Räder an denen Schnit und fernr selbst mit ihren Fägen und Rägeln auf dem unebenen Pfaffier oder Bogen machen.

§ 266.

Wer daher mit seinen Maschinen meist so viel ausrichten will, als die Theorie lehret, der suche so viel möglich alle Friotion ab, wasches geschiehet:

1. Wenn die Machine schnell gehet,
2. Daß sie nicht allzufehr beschnewret wird,
3. Daß wenige Theile und Stücke sind, die sich auf ihren Lagern bewegen, oder auf einander reiben, rutschen, schleifen, oder stemmen müssen.
4. Daß alle solche Theile harre, glatt, rund, eben seyn und nirgend an smugßamer Schmiere ermangle.

Wie hiervon unterschiedliche Exempe im Theatro generali Tabula XXX. und XXXI. zu seyen.

§ 267.
§ 267.

Denn ob schon eine Machine, die schnell geht, keine geringere Kraft nöthig hat, als die Theorie ausweist, so hat dennoch solche den Vorteil, daß sie nicht stöket, wenn auch ofters eine Ungleichheit vorfällt. Ex. gr. Als wenn ein Fuhrmann schnell zufähret, wird er durch einen Mord oder ausgefahrenes Lech gut wegkommen; da er sonst, wenn er langsamer gefahren, wäre fger blieben.

Der Herr Gärtnere in Dresden konnte mit einem Wagen, der sehr hohe Räder, nämlich von 6 Ellen hatte, vermittelst zweier Pferde, einen Schragen Holz oder drei Kastanien führen, ohne daß sie stark ziehen durften; allein sie müssen laufen, so viel sie konnten, wenn es aber fäser gehen sollte, so weil der Wagen nicht recht fert. Die Ursach, sagt gemeldeter Herr Gärtnere, (in der Beschreibung von Verbesserung der Kracht-und Last-Wagen) ist leichte zu geben; denn wenn die grossen Räder langsamen gehen, so gehorct fast zu jeden Umtrieb ein frisches Anziehen, welches aber den Pferden es schwer macht; so sie aber im Umtrieb gehalten werden, so verrichten der Schwung, was sonst die Pferde zu machen müssen.

§ 268.

Absonderlich aber wird bey einer Machine, die schnell gehen soll, erforder, daß sie nicht allzuviel beschwert werde, welches denn auch von sich selbst folget.

Und weil mit der Last auch die Friction anwächst, so kann ein Verständiger leichter sehen, daß es gröber die Last, je gröber auch die Friction wird, absonderlich wenn die Machine mit vielen Rädern, Zähnen und Schrauben überzostet ist: daher muß man, wo es anders möglich, die Last teilen, welches bey Wasser- und Mühlen- und anderen Künsten gar leicht zu präfizieren ist; und also nicht nöthig hat, eine grosse Last auf einmal zu heben.

§ 269.

Dass die Friction nicht nur nach Proportion, sondern noch vielmehr mit der Last anwächst, habe erwiessen an einer Machine oder Hebe-Zeug mit eisernen Rädern und Getriebe. Da ich ein Experiment gemacht, und an die Welle ein Gewicht von 50 Pfund angehängen; da denn ein Pfund zum Gegenwichte genug war; und wenn es sich bewegten solle, 2 Leeb der Kraft zulegen mußte. Nachdem ich aber 500 Pfund Last angehängen, folgte der Rechnung nach 6 Pfund 12 Leeb die Last in Bewegung bringen, es waren aber kaum 12 Pfund zulänglich: So viel hatte die Friction schon zugekommen; da doch die Machine recht gearbeitet, auch alles rund, glatt und wohl geschmiert war. Was soll man sich denn bey solcheten, rauen, unsichtbigen Machinen verkehren?

§ 270.

Damit aber die Sache desto besser in die Augen fällt, so will noch ein Exemplum und Figur von Wasser-Machinen geben, als:

Tab. LIII. Fig. II. sey eine Machine, dadurch aus einmal mit 10 Pfund Krafft an der Kurbel E. 960 Pfund Last oder Wasser an dem Seil H können erhalten werden, wie es die Berechnung theoretisch geht. Hingegen Fig. I. zeigt eine Machine, da mit 10 Pfund Krafft auf einmal nur 20 Pfund Wasser zu heben sind; und dennoch wird mit dieser leicht, wenn mit gleicher Krafft und Zeit aus gleicher Tiefse gearbeitet wird, vielmehr, ausgerichteter, als mit der so großen und kostbaren Machine.

§ 271.
Die Verhältnisse und Rechnungen sind diese:

Figura I. ist a eine Welle in Diametro von 9 Fuß, und die Kurzel von 2 Fuß, oder macht vielmehr mit dem Sborn einen Circul von 2 Fuß also, daß sich die Kraft zur Last verhält wie 2 zu 1, oder daß man mit 1 Pfd. 2 heben, oder vielmehr in equilibrio erhalten kann. Lin die Walze geht ein Seil ohne Ende c d mit 2 Eptern, davon ein jeder 20 Pfund Wasser fasset, und ist der eine allein das oben bey c und gießt aus, wenn der andere unten in d einschwenket; weil nun die Peripherie der Welle 37 1/2 Zoll giebt bey einem maß Umkreis und der Brunnen bis zu D 15 1/2 Fuß tief ist, so muß die Kurzel oder Walze a fünfmal umgedrehet werden, ehe ein Eymer Wasser heraus kommen, und da es 20 Pfund sind, so müssen 48 Centner heraus und die Kurzel 240 mal umgehen, ehe 960 Pfund heraus kommen, wie bey der Machine Figura II. auf einmal geschieden, woraus mancher Schluß möchte, die übersehrte Machine wäre der simpelsten weis vorgestellt, weil sie auf einmal bringet, was jene in 340 manf stets thun kann, so sich aber ganz anders zeigt, dem Fig. II. ist.

A Ein grobes Stirn-Rad in Diametro 8 Fuß und die Welle b, daraus das Seil H J aufschnürt 1 Fuß, also das auf der Peripherie des Rades bey c d eine Kraft von 10 Pfund 30 Pfund halten kann. bey c d greift ein Getriebe E von 1 Fuß ein, so am Rade F von 6 Fuß in Diametro seife ist also, das eine Kraft von 10 Pfund bey G eine Last am Seil H J von 480 Pfund erhalten kann. bey G aber ist auch ein Getriebe K von 1 Fuß in Diametro und mit einer Kurzel L in Diametro 2 Fuß, also das eine Kraft von 10 Pfund in L am Seil H J 960 Pfund erhalten kann.

§. 272.

So man die Last M auch 15 1/2 Fuß erhoben werden, wie bey Fig. I. so muß die Welle b und Rad A auch fünffmal umgeben, wie bey voriger Machine, und die Kurzel L auch 240 maß, gleichwie bey der andern Machine, also das einer Kraft, Zeit und Effekt der Theorie nach vorhanden; denn bey der heinsen Machine somit mit 10 Pfund Kraft und 5 maß Umkreis 20 Pfund Wasser heraus, und wenn wir diese Kurzel, welche mit der andern in der Länge ganz gleich, auch 240 maß Umkreisen haben wir auch 960 Pfund Wasser. Mein wenn wir dieser Machine ihren Effekt und Pratice auch ansicht, so wird ein großer Unterschied sein, denn bey der simpelsten Machine ist (ohne Seil und Eymer, so bey der andern auch sein muß) die ganze Last nur 20 Pfund, so gar keine Friction vermuthen kann, hingegen bey der übrischen Machine ist die Last 9 Centner; was diese vor einen Nachdruck für 20 Pfund haben, ist denen bekannt, die mit Lassen zu thun haben; und was vor ein Unterschied an Stärke der Zapfen seiner muß, und wie vielmehr Friction, nicht nur dem dreipafischen dicken Zapfen, sondern auch der Zaphe und Getriebe ersetet, da die Zaphe des Rades A wider die Triebs Strecken L mit einem Widerstand von vielmehr als 120 Pfund arbeiten und wenn siches in plano horizontali geschieden, wie die Experimenta in Theoar generalli Tabula XXX. gezeigt werden, so wäre schon; oder aber 40 Pfund von der Kraft verloren, da doch Zaphe und Getriebe eine viel härtere und gleichsam Berg ansteigende Friction machen, geschneige, wenn man nun auch die Friction des andern Getriebes rednet, da sich auch noch ein Widerstand ohne dem vorhergehend von mehr als 6 Pfund findet, also das wenn man alles genau untersucht und die Probe machen solte, man finden würde, das wenigstens, wo nicht
nicht gar die heisse Krafst mehr sein mußte, welches vnd die Krafst auf 2 Centner und mehe
sehn mus, ein grosser beträger. Rechne man auch, was die Machine als Materialien,
Bau- und Unterhaltungs- Kost sind, die Krafst eine sehr grossre Differenz
finden, zwischen einer simple und componiren Machine, oder zwischen einer Machine,
die schnell arbeitet, und wenig aus einem bis mehr, dass ist eine grosse Krafst, aber daraus langsam geher, das man sich wurd vergraben lass
en, ohne sich auf verstärkte Machines zu verlassen; denn wenn die Krafst nicht räthlicher, der
wird gar leicht begreifen sômen, dass keine Machine zu erfunden, welche mehr thut
als die bekannte Theorie ausweist, es sehe sich aus einem grosse Krafst damit fan
ausgerichtet werden.

Was von denjenigen Künstlern und ihren Werken zu halten, welche aus einem so
erschreckliche Kostenn seheen wollen, und gar mit der Schraube ohne Ende sich so breit machen,
stelle jeden Kunst-Verständigen zu beurtheilen anheim. Gewiss, solche Leute geben gar
derzelnlich zu erkennen, dass sie die Fundamenta noch nicht gekönten.

§. 273.

Auf die Frage:

Warum man so viel Machines erfunden, und auch noch täglich neue erfunden, wenn
mit solchen nicht mehr auszurichten ist, als mit denen bisherigen, oder als die
Theorie ausweist?

dient zur Antwort: Das von verständigen Mechanicis nicht gesucht wird etwas zu er
funnen, welches mehr thun soll als die Theorie ausweist, und Unerfahrenne sich entbilden,
sndern, das die Alten dasn mochten gebraucht werden, das sie so viel thun moegen als die
Theorie lehret. Oder, das durch eine neue Invention solches moegen erhalten werden.
Wie es man auch nicht das wegen Verbesserung der Krafst, sondern auch aus nachgestellten
Ursachen vieleren Machines nôthig hat.

1. Wegen des Orts Beschaffenheit.
2. Wegen Applicirung unterschiedlicher Krafste.
3. Wegen unterschiedlicher Last und nöthiger Zeit.

Ein jeder Umstand hiervon hat saß eine besondere Machine vorzüglicher. Denn eine ans
dere Machine kann kein an Orts und Stelle, wo man genügenden Raum und Pläs hat;
eine andere, wo man eingeschlossen ist, als wie die Kunst- Züge in denen Gruben, u. s. f. Be-
der eine andere ist nôthig zur Krafst des Wassers, eine andere Arch zu unter- und wiederum
eine andere Einrichtung zu überflächlichen Wasser-Fäderen. Anders muss eine Kunst ge-
baut sein, die von Wind, anders die von Feuer soll bewegt werden. Noch anders, die von
Thieren oder Menschen soll umgetrieben werden. Eine ganz andere Einrichtung erfordert
ein Wersen, wenn auf einmal eine sehr grosse Krafst, und wieder eine andere, da nur etwas
weniger soll gegebren werden, entsprechend muss eine andere Machine sein, das Wasser aus der
Tiefe zu heben, als damit man es aus einem Berg oder Höhe bringen will, u. s. f. also das
sdißt es eine Machine erbaut wird, dem welcher sich ein oder mehr besondere Umstände
vorfallen sollten: deswas ist leicht zu erscheinen, warum so vieles Arbeiten und Inventiones
nôthig sind, und wie ein Mechanisus sehr über daran ist, wenn sich bloh nach dem
Theatr. Hydraul. II. Theil.
Maasstab und Abteilung einer anderen schon gebauten, oder in Büchern verzeichneten Machine richten muss, und nicht selbst nach Beschaffenheit und Nothdurft seiner Machine exaculiren, und mancherlei Inventiones nach seiner Wissensschaft zuschneiden kann; dergen wegen ich es auch vor was einsitziges halten, bey jeder Machine, vornehmenlich aber bey den Wassers-Machinen, alle Stücke nach dem Maas-Stab mit allen minutissimis zu lesen, oder solches verlangen, ohne, was zur Demonstration, Berechnung und Vergleichen, nöthig ist.

§ 274.

Was ein Mechanicus, wenn er eine Wasser-Kunst anlegen will, ohnegewahr zu beobachten hat.

Ehe und bevor man ein solches Werck anleget, soll alles zuwiderwoh voll und ganz überleget werden, so wohl wegen des Orths und der Gelegenheit an sich selber, als auch die Höhe oder die Tiefe, wo und wie das Wasser muss herauf gehobet oder hinauf gebracht werden, wie viel zu ertheilen, ob es ein beständig Werck, welches seine gewisse Quantität Tag und Nacht liefern soll, sein muss, und in perpetuum, oder nur eine kurze Zeit dauern soll. Was vor Künste, so wohl wegen der Quantität des Wasserz, als Höhe und Tiefe, am bequemsten. Was der Kraft man brauchen kann, oder muss. Ob Wasser oder Wind, oder gar das feuer hierzu am bequemsten, oder durch Thiere oder Menschen muss verrichtet werden. u. s. f.

Dieses alles, und noch viel mehr, ist zuvorher wohl zu beobachten. Dass es also ein unmöglich Werck ist, von allen zugansamen Unterricht zu geben, oder anzuseigen, wie dieses oder jenes kommen können, und wie alle Anfänge bestragen zu machen. Jnzwischen will denn noch nicht unverlauten, unterschiedliches, doch wie es nur in die Feder kommen, anzuführen, woraus vieles, obser nicht alles, zu erlernen sein wird.

§ 275.

Erstlich ist der Orth in Augenschein zu nehmen, alswie die Kunst soll angeleg werden, und ob zweitens die Wasser nur bloss aus der Tiefe zu ertheilen, oder nur allein über sich einen flachen Berg hinauf. Denn soll es also aus der Tiefe geschehen, als den Brunnem und Schacht, die nicht tiefer sind, solchen Künstel-Künste, deren Tabula XX. XXI. inerst und Tabula IV. und V. in diesem andern Theil der Hydraulik, gute Dienste thun. Doch ist darvon zu observiren: dass die Wasser niemals höher ausragen. Denn wo dieses geschiehet, und die Künste sollen in die 5. 10 oder mehr Ellen tieff durchs Wasser reichen, wird es viel Verdruss verursachen, und den Vorteil sienlich hemmen.

In diesem Genus aber sind die Pischel-oder Täschchen-Künste viel besser; denn da verursacht es keine Hinderniss, wenn auch solche 50 bis 100 Ellen im Wasser stehen. Dass solche noch bey unterscheiden Sals-Brunnem, welche öfters in die 50 und mehr Ellen ausragen, und dem Treiben dennoch zu Sumpf gebracht werden, noch im Gebrauch sein. Wie solche beschaffen, und was der Fehler an solchen, findet man parte I. Tabula XXXV. § 138. seqv.

§ 276.

Nächst diesen, wenn solche wegen der Tiefe oder anderem Ursachen, das übrige nicht thun, sind die Cylinder-Künste gebräuchlich: Entweder wo nur so viel Wasser ausgezogen wird, als man brauchet, wie bey Brunnen geschichtet, da können bey geringer Tiefe die Brunnen-
Discurs vom Machinen-Besen. Tab. I. III.

Schmengel, dergleichen im ersten Theil Tabula XXVII. gezeichnet zu finden, gute Dienste thun; doch muß der Brunnen oder das Wasser auch nicht allzutief liegen. Es ist dieses zwar eine simple doch aber sehr nützliche Machine: Weil der Arbeiter, wenn es recht eingereicht, weder beim Einlassen noch Auffischen, vergeblich die Zeit zuwenden darf; und da die ganze Friction ein einigermaßen verursacht, wird das meiste unter allen andern Maschinen damit ausgerichtet werden. Daß einzige ist, daß es einen allzusorglosen Raum zum Schmengel erfordert, so aber, sondern sich in Städten, ja an vielen Orten, leitet, zudem auch solche Schmengel-Machine an publizirten Plänen vor keine Zierrath passiren kann.

§. 277.

Nebst diesen dürften die Scheiben-Kunste, derer im ersten Theil Tabula XXIX. XXXII. und XXXIII. unterschiedliche angeführte sind, ihren Platz nehmen, absonderlich wenn es mit der einfachen Scheibe und doppelten Eimer geschichtet, wie Tabula XIX. Figura I. und II. des ersten Theils zu sehen. Weil es hierbei sehr wenig oder gar keine Friction giebt, und der einzige Felser durch die Ungleichheit der Kette und Seils entstehe; wenn der Brunnen sehr tief ist, da offner das Seil auf der einen Seite viel schwierter, als Wasser und Eimer, wird.

Wollte man aber eine Kette ohne Ende machen, wie im ersten Theil Tabula XXXIV. Figura II. gewiehen, wäre eschen auch abgeschlossen, und hätte der Arbeiter niemals mehr als die Schwere des Wassers zu ziehen. Wie es nun anzuordnen, das so wenig die angierte Kette oder Seil nicht entwirret und Schaden verursacht, habe man in diesem Theil Tab. XII. Fig. VI. gelehret, und eine besondere Machine angeführt.

Ich ziehe billig diese Scheiben-Machine, in Auftheilung der Vermögens und der Simplicität, fass allen andern vor; aber wegen der Inconvenienz, das Knechen und Magen, ja allen, welche sich darin bedienen müssen, an der nasfen und im Winter so gar falten Kette, da offner der in Haupts von Händen daran hängen bleiben, niemand Belieben trägt, überst das etwas Raums auf der Straße oder Gasse erforder, und doch derfelben eine sonderliche Zierrath machen, so bedienen man sich derer gar wenig mehr, ja man schaffet solche, wo sie das Alteerthum gestiftet, wieder ab, und erwehret vielmehr.

§. 278.

Die Pump-Saug- oder Druck-Werke,

und zwar bloss wegen der Befeuelligheit; denn weil sie wenig Raum einnehmen, absonderlich wie die Schmengel-Pumpen, davon man eine in diesem Theil Tabula VIII. Fig. III. und IV. findet, ob es schon sonst mehr feilen, auch mehr Friction haben und Kraft rauschen, als vorher gemeldete.

Was vor ein Unterscheid unter einen Pump-Saug-und Druck-Werk, findet man Tab. XXXVI. des ersten Theils deutlich entworffen. Ob schon die Stücke meist einerlei sind; so wird ein Druck-Werk wegen des Kolbens, wenn er nur mit lederen Scheiben, nach der alten Art, wie Tabula XL. Figura I. des ersten Theils zu sehen, und nicht nach der neuen, auf Conflache Manier, wie ebenso auf dieser Tabula Figura IX. zu sehen, gemacht, noch mehr Friction haben; machen der Kolben im Druck-Werk sehr feine züger und aufschrieen mus.

Weil absonderlich den öffentlichen Brunnen das Wasser etwas hoch über das Pfahler mus erheben, so und danaeben der Drucker oder Hebes, damit es meist benöget wird, noch höher fehen mus, so fällt es, wenn es nicht mit einem Schwengel geschichtet, dem Arbeiter undep, quem,
Deriscus vom Machinett-Besen. Tab. LIII.

quem, oder man müsste erstlich auf ein Gerüste darzu steigen. Daher erwähnen viele dass dor das Druck-Werk, wie dergleichen hier Tabula X. Figura III. vorstellig, und da fan der Arbeiter nicht nur die Kräfte dessen, sondern auch die Schwere des Leibes brauchen. Doch ist darvon zu erinnern: dass der Drucker nicht zu hoch zu stehen komme, damit sich solcher mit der Last des obers Leibes auslegen kann, wie hier Figura III. Tabula LIII. zu sehen, und daswege gezeichnet ist, gleich wie es geschehen muss, wenn es durch stehen verrichtet wird, dergleichen auch Figura II. Tabula X. dieses Theils entworffen ist: da sich der Arbeiter mit dem ganzen Leibe hangend an kann, und also mehr durch seine Schwere, als die Stärke der Netzen, die nicht lange nachhält, ausdrücken kann.

§. 279.

Weiter hat das Druck-Werk vor dem Saug-Werk diesen Vorteil, dass der Arbeiter so wohl in Aufsehen, als Niederbrücken arbeiten, und also die Kraft thienen kann; denn es ist die Part des Wasser's in der Höhe 100 Pfund; wenn man nun die Kolben-Stange 50 Pfund schwere machet, so hat der Arbeiter, so er schon die 50 Pfund schwere Stange und Kolben aufsehne muss, hernach noch auch 50 Pfund Kräfie anzuwenden, die 100 Pfund Wasser zu heben, da er, ohne diese Hülfe, auch 100 Pfund Kraft nöthig hätte, so aber den Saug-Werk, worin durch dem Schwengel ohne Gewicht, noch durch dem bloßen Hebel oder Dracker, zuerhalten; denn liegt 100 Pfund Wasser auf dem Kolben, so muss auch 100 Pfund Kräfie angewendet werden, man nöthte denn am Drucker ein Gegen-Gewicht machen, so sich aber nicht wohl praktiziren lässt.

§. 280.

Eine besondere Art, mit einer Stange oder Feder, findet man in vorher angezeigeter II. Figur Tabula X. dieses Theils. Und noch eine andere, so deswegen mit denen Hüffen getreten wird, deren Figur Tabula XII. sich findet, weil aber den dieser allemass zwei Personen sein müssen, in nicht der Orten anzubringen.

Die meisten suchen solches mit Gewicht-Schwengeln zu erhalten, man findet dergleichen Tabula VIII. Figura VI. und in Theatro generali Tabula XXII. nebst der Urfache, und dass es nur den einfachen Röhren gut thut, andere Arbeiten mit 2 Schwengeln und 2 Stiften und einem Schwengel, zieht Tabula IX. dieses Theils an die Hand, die aber nicht practicable sind.

Über die allerbeste Art, eine Maschine also anzudrücken: dass die Kräfte equal zu arbeiten hat, geschieht durch die Schwung-Räder, man findet eine Figur nebst der Beschreibung Tabula XXX. und XXXI. dieses Theils. Wie es aber anzudrücken, wenn es nicht nur etwa auf 100 Ellen, sondern gar auf so viel Lachtern ankommt, die Wasser, und zwar in großer Menge heraus zubeien, erfordert eine ganz besondere Anfassung. Wie es in Bergwerken geschieht, findet ihr einen Entwurf in Theatro generali Tabula LXXI. und in diesem ersten Theile Tabula XXXVI. wegen der Röhren und Kolben, einen ausführlichen Bericht. Ein mehrers und vollkommeners wird bei den Berg-Machinen folgen.

Und dieses sind, meines Erachtens, die vornehmsten Arbeiten, das Wasser aus der Tiefe zu heben, in Anbcbung des Kassetts und der Zwischen-Geschirr.

§. 281.

Das Wasser über sich zu heben, dass die Kunst und Kraft unten, und der Ausgus in der Höhe thiehet.

Da
Da sind gar wenig Maschinen zu finden, es kann zwar auch durch Kunst, Künste geschaffen werden. Dergleichen ist in diesem ersten Theile, Tabula XXIII. XXIV. XXV. XXVI. und hier Tabula V. VI. VII. findet; alleine es geht nur auf eine geringe Höhe an, und in das Zwischen-Gefäß darin so festbar, daß es niemand zu räthen. Recht diesem kann es auch durch ein Saug-Merck geschaffen, dergleichen Tabula XVIII. dieses Theils zu finden, und dergleichen die Stadt Leipzig aufweisen. Wo das Wasser nicht höher als hier zu stehen, auf etliche 60 Fuß, ist es noch ziemlich practicabel, und allerdings eine der besten Künste, nein nur der Künstler, wegen des engen Kasten-Kreis und engen Lächen der Kolben abhängen würde, welches sie aber bis dazu mit allen diesen Künsten gemein hat, warum aber dieses der Kunst hinderlich, findet ihr im ersten Theil Tabula XXXVII. § 164. seq. ausgeschri- ret. Jnzwischen halte aber, daß, ohne dieses, keiner etwas besser aufbringen, noch auch diese Kunst, es sei denn durch die Application des Wassers auf das Rad, verbessern wird. Und die selbes vergeben, suchen endweder aus Roth oder Rosseit-Holz zu machen, oder eben aus Dummheit und Unwissen. Aber, alle diese Künste müssen so hohe Häuser oder Thürme haben, als das Wasser steigen muss, so aber sehr festbar, und vieler Orten unangemessen.

§ 282

Das vornehmste Kunst-Stück ist: je höher das Wasser steigen soll, je ungerechte Stiefel man machen müßte, damit die Steige-Röben genügsame Werete haben; wäre dahero gut, wenn sie so weit und noch weiter sein könnten, als die Stiefel sind. Absonderlich wenn die Kunst schnell arbeiten, und mehr als ein Stiefel auf einmal das Wasser zurückdrückt. Denn wenn man zu einen sechs-zolligen Stiefel eine drei-zollige Körbe nimmt, so muß sich das Wasser in der Körbe schon viermonchs schneller bewegen, und gießt es nicht nur eine größere Kranz daraus, absonderlich wenn es sehr hoch ist, sondern es zerstreut auch öfters das Wasser, nicht aus der Lüfter, als waren es nicht stark genug von Holz oder Metall, sondern bloß darum, weil sie zu enge sind, und würde eine Körbe von 4 bis 6 Zoll weit, viel besser daren, als eine von 3 Zoll, ob schon das Holz von einerin Dicke ist.

Ein wichtiges Exemplar gieber die Machine zu Marly, allwo zwar Räder von 30 Fus in diametro, aber nur Stiefel von 4 bis 6 Zoll weit zu finden. Da hingegen ein anderer, der immer sehr viel practirein will, wenigstens zweifachzollige wurde geschehen haben.

§ 283

Dieses waren also die vornehmsten Artzen, das Wasser auf günstiger und auch groß- ser Tiefe, und dann auch in eine gewaltige Höhe zu bringen.

Es sind noch viele Arten übrig, als die Heber, Schöpp-Mulden, Schwebung- Schaufeln, Schöpp-Räder, Wasser-Schnecken, Schaufel-Wercke, und dergleichen. Weil dieses aber alles Künste sind, womit das Wasser nur aus einer geringen Höhe zu erheben, so sind solche auch fast gar nicht zu rechnen; Jedoch we man die Wasser nicht hoch zu heben in Menge brauchet und nicht langer währet, sehr nützlich. Vornehmlich aber ist der M 1

Theatr. Hydraul. n. Theil.

An-
Anleitung einer Wasser-Kunst, unterschiedliches, absonderlich aber folgenderst wohlt in
Ob es ein beständig Beredsam soll, oder nur auf eine geringe
Zeit dauer?
Ob Wasser oder Wind darzu zu gebrauchen?
Oder: Ob es mit Menschen oder Thieren geschehen muß?

Da denn allemal das leichteste zu erzwingen, und welches die wenigste Friction hat. Besser
lassen man aber sich hinaus betrügen, wie solches mit der Wasser-Schnecke passirt, da man
sich lange Zeit der eingerichtet: es sei kein leichter Mittel, das Wasser auszubringen, als die
Schnecke; immittelst befindet es sich doch ganz anders, wie ich solches bey der XVII. Tab.
§. 82. des ersten Theils angewiesen.

Nur man aber ja die Schnecke brauchen, so habe Tabula XV. des ersten Theils eine
Anweisung gegeben: wie man solche mit vielweiser als dem halben Theil Kosten und
Arbeit vermeiren kann. So aber Platz und Raum ist, wird durch blosses Schröpfen mit
Maulen und Schwung-Schauffeln, (besser im ersten Theil Tabula VII. und VIII. etliche
Arbeiten verzeichnet sind,) vielmehr auszurichten sein.

S. 284.

Ferner und zumandern, hat man auch sonderlich bey Anordnung einer Wasser-Kunst
zu sehen auf die Krafft,

Ob durch Elementa, oder durch lebendige Thiere die
Bewegung geschehen kann oder muss?

Kann man die Machine durch Wasser treiben, so ist solche Krafft allen andern vorzuzie-
hen, absonderlich wenn man dessen gut und genugsam Getabl hat; maassen es beständig und
se Neuralen, so weder Wind, Feuer, noch Gewicht, vielweiser Menschen und Thiere
thun können. Das vornehmste hierbei ist:

Die rechte Application des Wassers auf die Händer,
man finder hiervon unterschiedene Arbeiten in Theatro generali von Tabula LVIII. bis
Tabula LXXX. nicht nur

Wie die Krafft des Wassers zu untersuchen, sondern auch
wie mancherlei Händer zu machen, und das Wasser dar-

auf zu führen?

Wiewohl es noch nützlich ist unterschiedliche Experimente beizweck anzuwenden, welches
vorhanden Sommer zu beweislichen verhöhte. Ein spezielles Exemplar, wie obengesagt
die Rechnung anzuwenden, soll unten folgen.

S. 285.

Weil sich nun otters zuzüglich, das man das Wasser aus einem Brunnen oder Schacht
erheben, oder einen Morsa ausbrennen will, aber nicht allzumeist ein Fluss ist, so hat man zu
dem Ende die Stangen-Künste oder Feld-Gestänge erfinden, da man die Kunst zwar
amfluss handelt, aber der Effer geschwebezweck aneinander gehängter Stangen in der
Kerne
Discurs von Machinen-Beizen. Tab. LIII.

Erne, wo es nöthig, also das es öfters solch Gesänge über Berg und Thal schweigt, und einen Berg auf dem andern wieder ab-geber. Es wird zwar viel durch die Früchte verloren, auch einiges an Hüb, wenn das Gesänge nicht scharf genug gespannt ist, auch die Ragel und Belsen hübschen Raum haben. Man findet dergleichen Engen-Künste, wie auch etliche Arten des Feindes-Gesänge's in diesem Theil, Tabula XXVI. Inglichen bey der Kunst zu Marly; Tabula XXIV. absonderlich in der V. Figur, Tabula XXIII.

§. 286.

Es aber in der Nähe sein Wasser, die Kunst zu treiben, so weiss öfters die menschliche Kunst und Fleiß solches an Orte und Ende, über Berg und Thal, oder viel mehr um und auch weiss durch die Berge, ja über tiefe Thaler herzulassen, das solches niemand zuwege mehr ge-salzter haben, wie solches genugmale Ermüde bey Bergwerken zeigen, auch die so genannte Halsbrücke zu Freisberg, als was besonders, betrachet werden kan.

Die Machine aber also einguirch, dass sie sich nach der Stärke des Windes dirigirt, ist der's missläng, theils fehler, theils unbeständig; ich habe in Theatro generali Tabula XLV. Figura I. und XLVI. Figura II. gezeige, wie es durch Menschen und auch dem Wind geschehen kan. Hier ist Tab. XXXIII. eine a parte Art vorgestellt. Mangelt es an Wasser und Wind, oder der letzte ist aus erdbietenen Umräumen nicht zulänglich, so feine man auch auf die Krafft des Fuers herauf sehn.

§. 287.

Die Krafft des Fuers, dabbyurch eine Gewalt auszugehen, oder damit die Wasser zu heben, ist vor diesen das gar nicht bekant gewesen, aber in die 50 Jahre ein und der andere Ver- such damit geschehen, welches nummehr zu einer solchen Vollkommenheit gebrach, das mit ei-
Discurs vom Machinen-Besen. Tab. LIII.

nur einzigen borgleichen Machine und dreier Personen Hilfe, welche Wechselfeise die Feuerung beugen, mehr als mit bunder Pferden man ausgerichtet werden. Das hulomm-
se ist, das das Feuer gar zu viel Nachtung erforder, und daher, wo nicht Holz in Menge vor-
handen, nicht mit Profe zu gebrauchen ist. Man findet die erste und andere Erfindung
 dieser Feuer-Machinen in Theatro generali Tabula LII. LIII. and LIV. und in diesem
 Tractat nicht nur eine gründliche Anweisung Tabula XLII. sondern auch Tabula XLIV.
 die vortreffliche Ungarische Machine des Poteri, und auf Allergnädigsten Worbusch und
 Kösten Sr. Känzleri. Majestät solche Machine zu Königsberg in Ungarn angelegt,
 und die nummehr bereits über Jahr und Tag mit gutem Success das ihrige verrichtet, also
 das man nicht nur dem Herrn Poteri vor die völlige Ausarbeitung verdanken, sondern
 auch Jedermaßig Sr. Känzleri. Majestät, welche die Künste und Wissenschafter nicht
 nur Allergnädigst lieben, sondern auch gewaltig befördern und schüben, mit ewigen Dank
 verdanken ist.

Wie ich denn auch die sonderbare und hohe Grade Sr. Känzleri. Majestät ge-
gen meine Meinheit und dieselbe mein unter Handen habendes Werke, zum allerhöchsten zu
räumen, und mit allerunterhändigsten Dank Lebenslang zu preisen und zu erkennen befeh-
len werde.

Es brauchte diese Machine zu gemeldet Königsberg zwar täglich 3 Klassern Holz,
so jährlich über 1000 Klassern beträgt, welches, wo kein Holz-Mangel, gegen die Kosten,
so wenngleich 100 Pferde verbrauchen, und doch dieses nicht praktiren können, ein sehr ge-
ringes ist.

§. 288.

Absonderlich könnt diese Machine mit vortrefflichen Rüden bey Bergwercken gebrau-
chet werden, wo wenig Auffschlag-Wasser anzutreffen, welches gemeinsinich in Sommer pflie-
gter auszutrocknen, im Winter aber einzufrieren, vermittels selbiger so viel Wasser allezeit
wieder auf das Künst-Rad zu bringen, als man sich oder nöthig ist, weil dasess die Stube
oder ganzes Zeche, die erfreu so viel und ein recht mehrere wieder auszudrücken köstet, als das
Holz beträgt, wie nicht melden was vor Zeit verschlummert wird, oder feinen profitabler
rück bleibt, wenn man selbst die Zeche abhöfft ist. Dahero bin ich der Meinung, dass man
viel besser thut, wenn man alle diese Künste einrichtet, das Wasser erlös auf ein Künst-
Rad zu heben, dieses aber alsdenn die Wassers hülfe. V eräch, das Wasser arbeitet viel
zugleich, kann also mit einem Schieber gemacht werden, das es allemal gleich stark lauffe.
Da es auch besser ist, den Saug- und Druck-Wercken, wenn es sache anhebet, und den Klos
bey besen der Ruhe bringet, so ist es besser mit dem frumen Zapffen, (beschogen er auch
den Saug-Wercken nicht abzuschaffen) als wenn die Operation so gewalst, schönelle, und
gleichsam wie ein Biß oder Schlag geklesper, ja man wird nicht nöthig haben, der Machine
so viel Gewalt auf einmal anzubringen. u. s. f. doch es heisst auch hier:

Experientia rerum magistra.

§. 289.

Die Machinen zu Sehun des Wasser's mit
Gewichten zu bewegen,
is eine grosse Einfall; oblichen Strada unterschiedliche Machinen Tabula 36. 38. und Be-
cker Tabula 135. 136. 138. 143. 144. und 147. vorgeschobt.

Denn
Discurs vom Machinen-Besitzen, Tab. I.31.

Denn weil eine lebendige Kraft die Gewichte auszieht, in der Zeit kann sie auch so viel Wasser, als leibige Kraft zu Bewegten anwenden, hinauf bringen, und behält noch die Kraft welche die Friction raubet, zum besten.

Ist nun weder durch Wasser, Wind noch Luft etwas auszureichen, so ist dahin zu sehen:

§ 290.

Wie durch die Kraft der lebendigen Creaturen, als der Thiere und Menschen, das Wasser zu heben.

Hier ist noch zu überlegen, wofür man wohlsieht, besonders wenn es nicht allein Kraft brauchet, nennlich: Ob es besser zwei Männer zu halten, als einen Mann und ein Pferd, oder zwei Pferde? u. s. f.

Die Kraft der Thiere wird auf dreierlei Art bey Machinen gebraucht. Als:

Zweitens, durchs Treten, im Tret-oder Lauff-Rad, bergleich in Tabula XXXVI. in Theatro generali und Tabula XIV. des ersten Theils vorgesteller ist. Oder

Drittens, aus dem schreg-liegenden Rad, bergleich in die XXXV. Enfail dieses Theils zeigt, wozu zwey Dcchsen gebraucht werden können.

§ 291.

Ferner ist nöthig zu überlegen die Kraft.

Es ist zwar wolheit, das bey der anderen und dritten Art die Thiere ihre Schreweo des Leibes anwenden können, und so viel Kraft haben, als sie schweer sind, allein bey solche absonderlich beym Tret-Rade, nahe bey der Linie der Ruse geben müssen, harnischlich mit denen Hinder-Füßen, oder wo es von aussen geschichtet, mit denen Förder-Füssen gar nicht auss Rade kommen, so gehe das meiste von der Schweere verloren, wie solches in obiger Figur der XXXVI. und XXXVII. Tab. des Theatri generalis ist gezeicget worden.

Auf dem Plano inclinato gehe es auch nicht viel besser, dagehre ist das allerbeste, wenn es durchs Ziehen geschichtet; Denn da kan ein Thier seine völlige Kraft anwenden.

§ 292.

Das perpendiculare und schreg-liegenende Tret-Rad ist dagehre nur zu gebrauchen, wo man nicht die völlige Kraft eines Thieres nöthig hat, und nicht beständig einen Knoche darzu binflessen will, absonderlich beym schreg-liegenden Rad; denn wenn der Dcchse angebunden ist, brauchet es weiter niemand, der Dcchse muss immerdar fort, wenn er nur einmal darzu angewöhnet. Wie man aber darvon Verfahren muss, wenn man ihm solches lernen will, wird in Theatro generali § 247. gehezret.

Theatr. Hydraul. ii. Theil.

§ 293.
Kan aber die Luft oder Machine durch einen oder zwei Menschen bewegt werden, so ist nicht nur allein darauf zu sehen, welche Machine sich am bequemsten schickst, und die wenigste Friction hat, sondern auch bey welcher der Mensch seine Kräfte und Schmerze des Leibes am geschicktesten und bequemsten abringen kann; denn eine geschickte Stellung ist saft halbe Arbeit. Mas hierdurch versanden wird, findet man weitläufig im Theatro generali in Figuren Tabula XXXIII, XXXIV. und §. 255. ausgeführt. Borsa auch zu ziehen die II. und IV. Figur Tabula X. dieses Theils; Denn da bekehret des Mannes F, mit denen vor sich gestreckten Armen, seine Kräfte allein in denen Arbeiten der Arme, und kan daher weder fandzliche Kräfe anwenden, noch auch eine Zeit nachhalten.

Hingen die beiden Manner G und H können Kräfte und Schmerze zugleich brauchen, und dagez ein viel mehreres praetiret. Absonderlich kan ein Mensch grosse Gewart durch stämmen und spreigen thun, dergleichen demn Hasep Tabula XIII. Figura II. und inzegliedenden Rad Tabula XXXV. Figura I. zu sehen. Dagez auch diese Machine unter diejenige zu achzen, den welcher ein Mensch die meisten Kräfte ausüben kan, und die Bewegung des Leibes doch nicht extraordinär sein darf, als wie bey der Tret-Machione Tabula VII. Figura I. da zwar der Mann so viel Kräfte thun kan, als er schwecr ist, weil er aber das Bein allemaßt sehr hoch ausheben mus, es ist eine beschwerliche und mühsame Operation.

§. 294.

Die leichtigsten und bequemsten Machinen sind, welche mit Schwung-Rädern versehen; Denn wenn solche recht eingerichtet sind, is es gleichsam ein Spielwerk. Allene es ift zu wissen, das niemals der Arbeiter hierben seine rechte Force anwenden kan. Denn weit alles sehr schnell gehen mus, so kan starke Arbeit hierben nicht betreffen; denn der Arbeiter sonst nicht nachhalten kan.

Es ift als eine Universal-Regel zu merchen, das zwar die Maschinen schnell, hingegen aber Thiere und Menschen langsam gehen sollen; Denn wenn ein Pferd oder Ochse auch nur ledig schnell laufen soll, wird es nicht so lange aufhalten können, als wenne es ziemlich starck zieht, aber darben langsam geht; und dergleichen finden sich auch bey denen Menschen, die können sehr starck als schnelle Bewegung ausführen. Bey denen meinten hat nicht der Mangel der Kräfte, sondern die Blasen die Schuld, wie ich mit meinem eigenen Exemplet bezeugen kan.

§. 295.

Bey denen publiquen Machinen, das mancherley Leute damit operiren, als wie bey Brunnen geschrieben, welche vornehrmlich stieber zu ziehen sind, muss die Einrichtung allemaßt also geschehen, das auch ein schwächeres Wasser schaffen kan. Alleine darzey ift meint wieder der Fehler, das, wenn die Machine eingerichtet, das ein kleiner Knabe sie zu treiben verspfen kan, als denn ein starker Mann auch nicht mehr in solcher Zeit schaffen kan, indem er doch noch 4 malz mehr praetiret könne, es bey dem, das er etwas schneller arbeitet, so aber nicht bey allen Machinen praeticable. Eine der bequemsten Machinen, daran Starcke und Schwäche, jedes nach seiner Kräfe, arbeiten kan, ist der sechze Hasep Tab. XII. dieses Theils, nur ift die einige Incommodität, dass er so viel Raum erfordert, so auf denen Bogen in denen Städten, und vielen Orten mangels, aber aus dem Band, und anderen publiquen großen Plägen gar wohin kan angebracht werden, bey denen Rügen findet man bey der Figur beschrieben.

§. 296.
§ 296.

Von dem Zwischen-Geschirr und Maschinen selbst.

Da bisher gemeldet habe, von Haffung der Wasser und deren bequemen Maschinen hierzu, und was von der Krafts generatior zu merken, so adez nützlich, auch einige spezielles wegen des Zwischen-Geschirr, oder von den Artten, die gesafften Wasser zu bewegen, und die Kraft zu applizieren.

Hier werden viele Bogen nicht zulänglich sein, wenn alles solche angeführt werden, daher ich mich der Kürze bestreiften werde.

§ 297.

Hier solte man nun fragen: Welche Arbeiten die besten sind? So dienet zur Antwort:

Dreiwigen Maschinen sind die besten und vor allen zu erweisen, die aus den wenigsten Stücken bestehen, oder welche die ganz simpfsten sind, die wenigste Friction haben, und nicht alzhart belästiget sind, da auch die Krafts bequem kan applizirt werden, ohne das etwas vergeblich weggehet.

Dergleichen sind: zum Gereimpel, das Tret-Rad mit denen Kästen, Tabula VII. dieses Theile, allda ist weiter niches als ein einziges Rad zum Menschen, und eben an dieser Welle eine Schreie oder Box, darüber die Kette mit denen Kästen gebeugt, und dahero weiter keine Friction, als was die zwei Zapfen der Welle machen, die aber durch unterlegte Scheiben, me solches im Theatro generali Tabula XXXI. Figura VII...X. gewiesen, auch um vieles san gemindert werden. Und weil die Kraft in weiten Abstand von Cenero arbeiten, kan nicht das geringste von der Schwere des Menschen verloren gehen.

Also auch Tabula XII. der stehende Hafstein mit doppelten Seil und Eymer, wenn daran die Zapfen recht rund und glatt, die Scheiben D und E, darüber die Seile in den Brunnen gegeben, sein gross, recht rund, auch die Polsen klein und glatt, so wird auf der Welt kein Mensch vermögend sein eine Machine zu erfinden, wem mit nur einem Gran mehr auszurichten wäre. Welches aber die heut zu Tage gewöhnlichen Windmacher sich...
§ 298.

Weiter ist dieser zu sehen, der Pfand-Topel mit denen Tonnen, Tabula XIII. dieser wird nicht nur den Bergwerken, Wasser und Berg auszufüllen, gebracht, sondern auch an etlichen Orten bey denen Salz-Brunnen, wie zu Großen-Quellen, in der so genannten großen Kunst geschaffen; denn die kleine ist eine Pflegel-Kunst. Doch mehr und bester aber ist der Topel mit denen Tonnen jazassen Tabula XXXI. und XXXII. Dieses ist eine solche simple Machine, dass es keine andere besommen wird, und wenn es mit einem wohl proportionirten Schwung: Nad gemacht wird, werden alle perpetuellerische Wagen-Topel, die doch so viel als der Elb-Schiff präferiren sollen, noch lange dieses nicht thun, es müsste denn Natur nicht mehr Natur seyn, oder Gott müsste aller Weisen und Verständigen zugängen, so viele 100 Ja 1000 Jahr gelesen, das sie solches Wunder nicht erkannt, und es hernach der denen in Mechaniciis ganz Unser Fabriken offenbar haben: da aber Gott heute zu Tage wenig oder gar keine Wunder-Werke, und zwar in solchen Dingen gelehret läst, so wird mein zweifel des grösster; doch was brauchet viel Worte: die Zeit muss es lehren und vielleicht, dem Verbrechen nach, noch ehe, als dieser Sagen aus der Druckerey wieder zurück kommt.

§ 299.

Ich will aber hierdess nicht geläugnet haben, ob es gar nicht möglich, einige Überwuche oder das Perpetuum mobile selbst zu finden, oder auch, das es nicht schon durch den Herrn Orteyrum erfinden sey; denn dieses ist eine ganz andere Sache, und gehört diesser gar nicht, woher ich mich aber künftig weiter erfahren will. Hierbei sind dessen genen Machinen zu vermeiden, da die Kraft inwägig arbeiten mus. Zum Exemplum:

Wenn an einem Kessel, wie die Bergleute thun, nur ein einziger Kessel angehängt wird, da bar zwar der Arbeiter bey auslassen des Krues genug zu thun, aber die Zeit über, da er solchen wieder einein lästet, gebe verloren, fügeret er aber zwey Kuebel, so gebe erlastliche Zeit verloren, sondern er gewinnt auch die Schwere der Kuel, weil sie stets mit einander in equilibrio stein.

Item: Die Pumpen, durch den Drucker und auch mit dem Schwenkel ohne Gewichte ist auf einmahl die ganze Luft zu heben, aber im Niederlassen nichts zu thun, welches hingegen durch ein Schwung: Nad aquirir und die Luft geheilte werden.

Es werden zwar andree einwenden (weil ihnen sonst nichts übrig bleibt, damit sie ihre überlegte Machine defensiren können) den kleinen Küeben müsste man so oft ab und an schlagen, oder man brachte vielmehr Zeit mit dem Eimfüllen und Ausfüllen zu, welches zwar wahr ist, aber einen so schwer belasteten Küeb herbe zu treten, oder durch einen Karne: Zaufer anlaufen zu lasen, wie vielmehr Kraft und Verhinderniss machen ja was das meiste ist, so rauher die so starke Friction diesen Vortrieb sehne, überdies wenn die Machine nicht recht gearbeitet ist, gebe wohl die halbe Kraft verloren.
Will man aber ja gerne mehr söndern, so nehme man lieber an statt 2 Personen vier, und behalte den ordinarischen Haufel, so wird noch einmal so viel praxiert und keine grössere Kosten auf die Machine gewendet werden dürfen.

Was ich anhe von Erz und Berg gesagt, ist auch von Ausforderung der Wasser zu verschen.

§. 300.

Von Wasserhalten, und womit man solches hält, und aus den Gebäuden bringt.

(Wobei meine wenigen Anmerkungen in [] angetroffen.)

§. 1. Das Wasserhalten geschieht mit Maschinen und mit Künsten, nachdem die Zugänge sein oder stark, auch in weniger oder grosser Teuffe, dannach auch die Möglichkeit mit Künsten anzunehmen ist.

§. 4. Es sind aber die Krücken-Pumpen, Druckel und Schwengel-Pumpen im Gebrauch, nachdem es Raum zu einer oder der andern, und bequem damit anzunehmen ist. (Davon die erste Art im Theatre Tab. XXXIII. Fig. VIII. A; die andere Fig. VI. weist auch Fig. I. und II. die Tret-Pumpen zu rechnen; die dritte Art die Schwengel-Pumpen ist Tabulä XXXIII. Fig. I. II. III. zu sehen.)

Theatr. Hydraul. II. Theil.

§. 7.
S. 7. Wenn die Möglichkeit nicht in einem Tag-Schacht, dass man ungekuunt mit Zöbern so viel Wasser fortbringen kann, als die Zugänge sind, muss entweder der Schacht geteilt werden, dass man gedoppelt so viel darinnen fortbringen kann, oder man muss unterscheidene Pumpen untereinander hinein richten, dass eine der anderen zubede oder zugießt, wie denn dieselbe Orten gedoppelt neben einander sein müssen. (Wie Tabula XXII. Figura I. und V. und Tabula XXXIII. Figura I. II. und III. zu erfassen, auch in diesem Theil Tabula XII. Figura I. und anderer Orten mehr sich findet).

S. 8. Was aber ein solches vor Unlosen, Unbequemlichkeit und Verhinderung verschafft, ist aus dieser abzunehmen: Denn so bald eine Pumpe wandelt, müssen die anderen alle in derfelben Reyhe hinauf gerinnen, und geschiedet auch, dass es manchmal anfängen zu fallen, dass es nicht möglich ist bald die Pumpen wiederum zum Gießen zu bringen, oder so der Knechte einer erzackt wird, oder etliche beyd Anfahren außen bleiben, is gebe es Verhinderung, dass man oftmaßes die Hauser an die Pumpen nehmen, und die vorgangere Arbeit verwännen lassen muss, oder werden gefunden, dass sie in 1 oder 2 Schichten nicht wieder auf die Schlegel kommen können. In Summa: starcke Masen vier mit Menschen- Handen zu halten, erfordert grosse Kosten, und wird oftmaßes wenig darbein verrichtet. So schiefer man auch, we in manchem Gefenbode etliche Wasser, die des Raches über; oder; Laechter hoch aufsagen, erst früh müssen gezogen werden, (die aber man oft 1, 2, bis 3 Stunden zubringen, ehe man auf die Schlegel zur Arbeit kommen kann) was es vor Verhinderung gesie, wenn nicht das Macht zuwobr die solche Wasser gezogen werden.

S. 10. So hat es auch zweyferen Form der Zöber. Die Alten sind oben enge und unter weit; die neue Form ist gleich einer Lange, mit zwei Höden, dawen bey 50 Krumnen Wasser gehen auf 2 Personen, sind bequem, im seeien so wohl als im flachen wasser unvergoßen fortzubringen.

S. 12. Es hat aber eine Pumpe, nachdem sie zugerichtet wird, leicht Huß denn die andere. Der gebräuchliche Huß ist auf 5 Laechtern. Wenn man aber den Huß über eine dicke Walse oder Rolle, entweder mit einem Stuck Ketten oder Stücke Seil giebet, welches zwar meine Erfindung ist, so ist aber herach von einem Machancio beschrieben gesehen, so ist die Regierung solcher Pumpen um einen guten Theil leichter, als nach dem alten und istigen Gebrauch, sonder aber doch effeir erleichter werden, wenn man es gleich eun
Discurs vom Machinen-Machen. Tab. LIII.

Von Künstlen und Kunst-Gezeugen.

§ 2. Wo man die Räder weit von den Gebäuden hängen, und Feld-Gestänge braun- chen muss, errichten sie zwar das ihre, kommen aber den andern in der Macht nicht gleich; dazu giebt es immer daran zu beheben und Winterzeit Verbesserung.

§ 4. Des Feld-Gestanges aber ist zweyerley, als einfach, welches man ein Geschlepe nennt, (vid. Tab. XXVI.) so auch das geringste und schwächste, so den Hub leicht ver- liert, und nur Wasser hebet, wenn das Rad das Gestänge zu sich ziehet; und kann man keine doppelte Säge an ein solch Geschlepe und dessen Formelle hängen; weil sich das Gestange dießen mischte, dess Schwinge man am Bocke und das Gestange unten daran hängt. Gleichfalls wird auch ein solch einfach Feld-Gestange auf hösserten Räbeln oder Walzen, welche in dem Säulen (die in der Ede eingegraben worden) umlaufen können hin und wieder gar leicht regiert. (Tabula XXVI. Figura V.)

§ 5. Dann ist gedoppelt Gestänge, zu welchen Schwingen, Stoss-Bäume, oder Siege auf die Böcke gelegt werden; sind beständig und die Bausätigen ungebiran wieder einzuwechseln. (ibid. Fig. III.)

§ 6.
§ 6. Und obgleich ein solch Getange bei 400 in 600 Lachter im Feld zu ziehen und zu schieben hat, auch über Berg und Thal gerichtet wird (Tabula XXVI. Figura 1.) geben doch die Berge keine Verrinderung, und können gedoppelte Säge, das Wasser gießet in hin und her, weshalb daran gehangen werden.

§ 9. Man bänger aber an die Gebäude gerne große Räder, darauf man wenig Wasser bedarf, sonderlich wenn die Stellen ohre das mit vielen Wasser beschwerdet sind, darauf nicht allein die Aufflagwasser ablaufen sollen, sondern auch die Wasser, so der Gezeuge heraus gehe. Ein hoch Rad aber wird nicht über 2 Ellen oder 6 Lachter hoch versetzen, um das es ohne des im Schwenden sich leichtlich ausreitet, (wenn es nicht recht im Circula geteilt, aber sich in einem Zapfen-Kloß etwas niede gearbeitet hat,) davon es bald maßig, elbbar wird.

§ 10. Man muss sich aber richten mit Hängung des Raubes und Bauung der Rad-Strube nach dem Gang und seinem Fallen, darauf die Gebäude, denen man das Wasser benehmen will, sich befinden.

§ 12. Zudem auch so hat die Kunst mehr Beschwerung in Flachen, denn in Seigern, da die Schächte-Stragen einander die Waage halten, im Flachen aber kür ausstieg, gezogen und gestochen müssen werden, wie nicht weniger, dass man in den Flachen mehr Röhren-Merk muß haben, will man eine solche Leuffe erlangen, deren man im Seigern weniger bedarf.

§ 13. Ob auch wohl ein Rad auf einem kleinen Zapfen besser laufft als auf einem diencken, so müssen es doch solche brumme Zapfen feyn, die stark angst und dauernd können.

§ 14. So laufft ein hoch-Rad geschwinder als ein niedriges: (nemlich in Ansehung der äußerlichen Peripherie des Raubes) jedoch kommen die niedrigen eher herum, und es gießt auch mehr aus einen Rad Wasser, wenn es schnell gehe, (weil es nicht so viel Wasser fallen lässt, will aber wegen der engen Röhren auch viel mehr Kraffe haben,) denn langsam, mache aber deso eher Stücke, wo es die Gewalt hat.

§ 15. Welche Räder beständig sein sollen, werden von stiefern Posten und Dretern gemacht, welches nicht leichtlich halten, so es Wasser hat.

§ 16. 17.

§ 19. Von solchem Nöhnerwerk werden zweyey Sähe zugericht, nehmlich, hohe und niedrig, da einer eher als der andere heben kann. [Vid. Theator generali. Tabula LXXI. Fig. I. der hohe Sähe. Figura III. der niedrige Sähe.]

§ 21. Man gebraucht die niedrigen Sähe meistens solcher Orthen, wo die Gruben leichtlich erahnen, wegen stärker fluth, ab dass man nicht Wasser ansucht.

§ 22. Ein niedriger Sähe ist von einer Kolben-Nöhe oder Muster, er setzt einer Große 2.9. bis 3.5. bis 3.0. bis 3.5.
Discurs vom Machinetten-Besen. Tab. LIII.

und das gebrochene wieder zu repariren, auch die wenigsten Personen darben aufzumachen, esfordernd) dieses nicht gleich kommen.

§ 28. So können theils solche, so man vor künstliche Werke hat, nicht aller Art in Seligen und nächsten angebracht werden, will auch zu manchem viel Raum in der Grube sein; und wenn man es recht bereitet, so sind es solche Künste, die die Augen verbunden machen, aber schönsten Muskeln darben schaffen, wie dann derer viel über allehand Arbeiten von Augustin Ramelli in seiner Sack-Kammer beschrieben werden. Man hat manches Orts der gleichen zuverhören beim Bergwerk ungewöhnliche Künste gebraucht, und wenn etliche 1000 s. darüber vergünftet, und man damit nicht fortkommen fämen, hat man erst zu den gebräuchlichen Gruben-Künsten greifen müssen, [oben dieses ist es, was ich mit so vielen Umständen zu erweisen suche, damit die Leute doch einmalh möchten sing werden, und sich nicht mehr einbilden oder haben wollen, als GOTT in die Natur gelegt.]

§ 30. So aber die Wasser hüter, so muss man 2 Sägen nebem einander, auch nach 3 und 4 zückt verschnittert und zugleichen: Wie denn manches Drehs derer 4 nebem einander, und so viel unter einander zum müssen. In fast zwey recht zuckten zukrechten höhen Sägen müssen fünf niedrige sein.

§ 31. Es geübt aber ein Säg, nachdem er geliebert, zuckter, grossböhrig ist, und den Hub hat, mehr als der andere, und ist observert werden, dass ein hoher Säg aus einer 12 böhrigen Kohre, usf einem Hub 13 Kannen, Freybergisches Mauser, geöffnet und gehoben wird. [Dieses soll künftig genau untersucht und berechnet werden, damit man auf jeder Seite und Hub so gleich, vermittels einer Tafel, wissen kann, wie viel der Säge fallen lässt.]

§ 32. Zu einem 21 Ellen hohen Rad, wie der auch zu andern, die etwas niedriger sind, hat man krümme Zapfen usf 12 Ellen auch etwas höher, das also der ganze Hub, so lange der Kohlen mit dem Veder in der Kohren, sich bin und wieder ziehet, usf 2 Ellen auch 1/2 Elle kommen.

§ 33. Denfalls auch ein stetes Aufwarten der Kohlen muss sein, und leichtlich was manelbabe werden kann, wie es denn auch oft manchem von sich selber zu holtern anzeigt, so hat man, wenn die Küder am Tage hängen, oder es sich ausser den Schächten thun lässt, Wächter, die da melden, wie der Gezeuge geht; es er geschwind, oder recht, oder zu langsamen herum lässt.

§ 34. Es kommt aber ein Rad schwind oder langsam herum, nachdem es mit viel Sägen beköpfer, oder Wäser hat, auch nachdem man es geschwind oder langsam will geben lassen. So haben die Kunst-Dreher auch ihre Nachricht, ob ihre Gezeuge recht gehen an den Zählen, so ferne sie den Wächter vernehmen können, welches ein Hammer, der aus ein Stück Metall, oder alt abgebekte eiserne Kohlen-Köchle schlägt, dass es schallet, welchen die Korb-Stange, so an dem krümme Zapfen hänget, wann das Rad einmalh herum kommt, in die Höhe ziehet und fallen lässt.
§ 35. Es kan aber ein hoch Rad in einer Stunde 350 maß herum kommen,
darß nicht mit dem geschmieden laufen, das also in einer Stunde eine 12 höchste
Röhre 6300. Kann man Wasser kan ausgießen. [Sind 100. Eszen, jeden zu 63. Kän-
nen gerechnet, so aber 64. fehn sol.]

§ 36. So muß auch bey Küsten ein guter Borrath an Holz, Stangen und
allerhand Rohrwerk, Schrauben, Zieh-Bändern, Ringen und andern Eisen-
Werk, desgleichen krumme Zapfen seyn, damit, so etwas breite oder wandelsbahr wird,
geschwind wieder kan gemacht und gekessert werden, damit die Wässer noch hoch aussehen.
Denn was manchesmaß nur eine Schacht bey grossen Zugängen aufgeht, kann oft in einer
Woche kaum wieder gewälzt werden. Sie sollen auch alle Schacht-und Küsten-Stangen
durchaus gleich und einer Länge seyn, deren man allezeit zugerichte zum Gebrauch in
Borrath haben soll.

§ 37. Es müssen auch die Kunst-Schärne in gerade Truppe gerichtet werden, damit
die Kunst-Stangen in ihrer Gerade verbleiben.

§ 38. Es besteht sich auch offmals, daß Gesenke oder Gebäude von den Kunst-
Schächten abgesehen seyn, wann man wegen grosser Wasser-Beschwerung nicht bauen
kann, daß man Strick-Gefäße brauchen muß, dieselben werden an das Schacht-und
Kunst-Gesänge mit Creuz-Bellen und Amnest angehängt, mit Richtung des
Rohr-Werkes in solche Gefäße. Solche Strecken-Gefäße oder Gesenke läß-
men sodann die Kunst- und Zeuge sehr, und machen sie schwer. Wenn sonderlich auch das
Gefäße oftmals gebrochen mußt werden, mit viel Creuz-Bellen, verliesen sie bald
den Hub. NB. lange Amne.

§ 39. Bey grossen zugehenden und beschwerlichen Wässern, soll ein Steiger vor al-
len dahin seyn, wie er viel und hohe Strößen neben einem riehen Vorgesäncke in dem
Gebäude behalte; Denn wo ein Gebäude ohne Strößen, und einem Regeln-Plan gleich eben,
wie man es nennen thut, gebaut wird, so wird ihm nicht recht vorgestanden; Denn so bald
nur etwas an Gegen-mandelsbahr wird, daß die Wässer nur ein wenig aussehen, ob man
sie gleich bald wieder zum Stumpf bringen kan, so treiben sie doch die meisten Hauser aus,
und bringen Verhindung, das vergebne Zeit weggehen.

§ 40. Der beste Verbaud ist, so unterschiedliche Stollen in einem Gebäude sitz,
die die meisten Tage-Wässer aushalten, und daraus abgeführt werden, und da es wenig
Grund-Wasser gibt. Es sind aber solcher Gebäude nicht viel anzutreffen, und so man
die Wasser-berigen alle schweben wolte, würden hin und wieder wenig Bergwerke gebau-
ert werden.

§ 41. Es sind aber die Wässer, so man Grund-Wasser nennet, und da manche
meister, sie kommen von unten heraus, nichts denn solche Wasser, die sich von Tage-Was-
ßern tieff in die Gänge und Klüfte ziehen, und ihren frehen Hauff oder Gang haben,
und wo sie können durchkommen, den Gebäuden zusatzen, sondern, wo über einem Gang, da-
rauf man baut, so viel Düer-Gänge und offene Klüfte seyen, mehrereinles in solchen Ge-
birgen, da alle Schnee-und Regen-Wasser versickern müssen, die sich durch seine Tage-Düe-
ßen und Abfälle verminderen können. [Dieses bekraftigt noch mehr, was ich in Thea-
tero generalli von Stellen, das solche alle von Regen oder Schnee entschehen, gezagt habe.]

NB. Was weiter bey aussehenden Wässern, von Herder-Sägen, von Unkosten
von vielen aber zu erinnern, wird bis ins Thcil, von Berg-Machinen vers-
habert.

So weit aus diesem Buch.
Nachdem bisher alles meist nur generaliter traktirt worden, so folgen nunmehr auch etliche speciellere Entwivel. nennlich:

Aus einem Brunnen von 40 Fuß das Wasser durch Saug- und Pump-Werk mit Menschen zu heben.

Die Kolben und Ventile anzuerdnen finder man in ersten Theil Tabula XXXVIII. Figura I. - IX. Die Veneile Tabula XXX. den bequemsten Kolben hierzu Figura VII. Tabula XXXVIII. Und wenn es die Kolben nicht ertragen will, ganz messinge Kolben-Röhren zu machen, können solche nur mit Messing gefüttert werden, wie Figura III. Tabula XXXVI. Dieses Theils weiser; weil solches am Leber und Reparaturs-Kosten wohl erhaben wird.

Nach der Weite der Kolben-Röhren muß man die Schwere des Wassers rechnen, ist sie 3 Volt weit, so nimmt man aus der Tabula des Theatri generali, oder wie sie hinterzulege angehangen, die Schwere von einer Röhre 3 Volt weit und 12 Volt hoch, wird sein 1 Pfund, 10 Volt, 3 Quint. Da nun das Wasser von der oberen Fläche des Brunnen bis zur Ausguss-Röhre 40 Volt beträcht, so multiplizieret man die 2 Pfund 10 Volt, 3 Dec. mit 40, so bekommt man über 93 Pfund. Welch geschoß eine Last, die obere Dacht eines Hebzeuges, ein Mensch, wenn er auch ziemlich stark, ohne Incommodität nicht bewegen kann. Darum ist auf eine Machine zu denken, wodurch auch einer nicht alzustarken Person Wasser und Kolben bequem und leicht zu bewegen wird.

Die simplice Arck ist der Hebel, entweder daß seltiger bis gezogen wird, wie an dem doppelten Figura III. Tabula XXXIII. in Theatro generali zu sehen. Oder gemacht, wie Figura II. Tabula XXI. dieses Theils ausweiser.

Beim den ersten beiden hat man wohl achtung zu geben, damit man alles demassen anordne, daß der die Person ihre Schwere des Lebes zugleich mit der Kraft brauchen kann, entweder daß sie sich anhänget, wie Figura II. Tabula X. dieses Theils, oder mit dem oben Leib sich draufs leget, wie Figura V. Tabula XXIII. Parte generali bey dem Druck-Werk; oder hier Tabula LIII. Figura VI. gewiesen. Aus solche Weise kann man der Person viel mehr Kraft zweigen, als wenn selbsige nur die Kraft der Armen gebrauchen kann, wie Figura VI. Tabula XIII. Parte generali und Figura VII. Tabula X. dieses Theils weiser.

Will man nun den Hebel als einrichten, daß die Kraffe etwa 20 Pfund seyn soll, so theifer man solche demassen ein, daß das kurze Ende 1, und das lange 3 Theil behält, so wird 18 bis 19 Pfund mit dem Wasser über Last von etl. 90 Pfund mit der Fixion ins Equilibrium fallen.
Bei 40 mahl umrissen der Kurzel gehet 3. mahl um und kehret mit winn-Kruft 3000 füß hoch wie figura I.

Bei 20 mahl umrissen der Kurzel gehet 3. mahl und kehret mit winn-Kruft 3000 füß hoch wie figura II.

Bei 10 mahl umrissen der Kurzel gehet 3. mahl und kehret mit winn-Kruft 3000 füß hoch wie figura III.

Bei 5 mahl umrissen der Kurzel gehet 3. mahl und kehret mit winn-Kruft 3000 füß hoch wie figura IV.

Bei 1 mahl umrissen der Kurzel gehet 3. mahl und kehret mit winn-Kruft 3000 füß hoch wie figura V.
§ 304.

Dergleichen Einrichtung kann man auch machen bey den Schwengeln Fig. VI. Tab. VII. dieses Theils, und hat hierbei die Personen noch den Vorteil, daß sie sich darin mehrere Male wenden und kämmen können, und faßt eben so viel damit ausrichten, als mit der Schwere des Leibes. Weil aber die Personen nur die eine Helfer Arbeit hat, und die andere Helfer ledig gleitet, so kann man auch die Maschine einrichten, daß sie continuirlich zu thun hat, hingegen aber auf einmal nicht so viel Kraft anwenden darf, sondern anstatt 20 nur 10 braucht, und das, wo auch von einem, der nur halb so stark ist, eben dasselbe man preßt werden.

Hierzu ist am allerdientlichsten das Schwing-Rad, wie es Tab. XXXI. Fig. I. geseheller ist, da die Kräfte von 10 Pfund im ledigen Lauff so viel Kraft mitheilet, daß es hernach die Kraft von 20 vertreten kann.

Wie es mit einem Gewicht-Schwingel zu erhalten, zeigt die letzte Fig. Tabulae XXII. Theat. general. welches aber doch nicht so gut, als das Schwing-Rad: wie denn alle Circular-Bewegungen überhaupt besser seyn als die abwechslenden.

§ 305.

Sonst kann man auch die Lauf gesehled werden, wenn man dem Hebel a b Fig. II. Tabulae LIII. fordert e dem Arbeiter ein Gewichte d angeschlossen wird; Da nun schon der Arbeiter das Gewichte mit in die Höhe heben muß, so kommt es ihm dennoch bein Herantreten wieder zuläufig.

Dergleichen gesehledet auch durch eine besondere Art mit der Stange Fig. II. Tab. X., dieses THEils durch die Hebel-Pumpe, da der Arbeiter Kraft anwenden muß, die Stange mit hernieder ziehen, die ihm aber alsdenn wieder ziehen hilft.

Will man wissen, wie viel Wasser mit einer solchen Pumpe kann gesehled werden, so hat man auf die Bewegung, welche ein Mensch mit einem Arme machen kann, zu sehen, die über 2 Zoll nicht sein wird; und da sich das lange Ende gegen das kurze wie 3 zu 1 verhält, so bekommt der Kolben etwas über 6 Zoll Berechnung, so etwa 1 Pfund Wasser beträgt. Hernach muß man sehen, wie viel Zuge in einer Minute geschehen können, und daraus das Fact machen.

§ 306.

Das Wasser eben aus dieser Tiefe, oder aus 40 Fuß, mit vorigem Saug-Werck, hoch vermittels eines Ziegen- Bocks in einem Lauff-Rad, zu heben.

Man hat an die 6000 Zentner Ziegen-Böcke, welche man gar leicht gewöhnen kann, daß sie eine Zeitlang in einem Lauff-Rad laufen, ja offensichtlich sich selbst zur Arbeit geben, weil sie Begriffe zu seyn haben. Ich will hier eine Anweisung thun, wie es auf eine ganz simple Art geschehen kann.

Weil ein solches Rad nicht allzugerad und schwer seyn muß, so nehmen wir dessen Diameter 8 Fuß oder 4 Ellen, solches siehe Tab. LIII. Fig. V.,

A B das Rad, die Kurvel C 6 Zoll, gibt einen Fuß Hub, der Bock hat 40 Pfund schwer, wem nun solcher im Rad 2 Fuß oder die Helfer von der Linie der Nabe in 1 1/2 Fußet, hat er in Anlegung der 6 Zolligen Kurvel 160 Pfund Kraft, wenn die Wärge wie hier, am Theat. Hydraul. II. Theil.
weist von dem Centrum absehst. Allein wo der Mag-Balsken D E, den auf der einem Seite die Kurb-Stange C D und auf der andern die Kolben-Stange E G fasset, gleichfalls, daß D F so lang als E F, so wird an der Kurb-Stange C D nur eine Kraffe von etlichen 90 Pfund erforder, noch zu kürzer, und damit ihr dessen süße Schmerzen nümen, kann der Mag-Balsken D E derselben eingerichtet werden, daß das Theil D F nach Proportion um so viel kürzer wird; doch das man die Laft des Wasser, und der Stange wenigstens, wegen der Friction, über 100 Pf. rechnet, und die Kraffe des Bockes auch 150 Pfennig für die ist so findet man, daß die Kraffe sich gegen die Laft verhält wie 3 zu 2, und also muß man auch seinen Hebel oder Mag-Balsken D E absehnen, daß D F 2 und E F 3 Theil lang wird, dadurch bekommt man auch um so viel mehr Substanz, und daher um ½ mehr Wasser.

Hieran dient zur Antwort: Daß dieses zwar recht, wenn das Rad schnell bewegt wird, allein weil der Bock nicht schnell läuft, sondern nur laufe geben, so kann er dem Rad wenig Kraffe durch den Schwung mittheilen, und ist darauf wenig Friction zu machen.

Damit aber der Bock nicht durch die gänzliche Heilste und brüder müsig gehe, so könnten zwei Kolben-Röhren angelegte, und solche mit einem andern gleich-armigen Mag-Balsken J K an die Kolben-Stange E G bey J Fig. IV. angehängen werden, da auf der andern Seite bey K auch eine Kolben-Stange nach der Höre M geben, alsso das wohl auf der einen als auf der andern Seite die Kurbel oder der Bock zu thun hat. Weil aber der Bock zu leicht, so müsse der Mag-Balsken D E nach Proportion abgetheilt und D F um so viel länger gemacht werden; hergegen gibt es um so viel weniger Hub. Auf diese Artz müßte ihr zwei Saul-Röhren in den Brunnen gegeben, so auch beschwerlich und kostbar ist; Daher es besser sein wird, wenn an die Hülle des Lauf-Rades O R Fig. V ein Kammm-Rad S von 4 Fuß machen, so in ein Getriebe von 2 Fuß T eingesetzt, an die hielben Welle erheilt der Kurbme Zappfen V von 6 Zoll festgesetzt wird, Weil nun das Getriebe T ganz maß umlauft, ehe S oder R Q einmaht, so folget, daß noch einmal so viel als vorher mit einem Stiefel geschvzen muß und braucht nicht mehr Kraffe. Der Mag-Balsken W X kann nach obiger Art eingetheilt werden.

s. 307.

Eben diese Quantität Wasser auf gleiche Höhe durch ein Trenn-Rad mit Menfchen zu heben.

Wir wollen die ganze Schwere mit der Friction 100 Pfund thun lassen. Das Lauf-Rad müßte wenigstens in Diameter 12 bis 14 Fuß hoch sein, wir wollen aber nur 12 Fuß thun lassen. Die Menfchen wollen wir auf einem Centner oder nur 100 Pfund rechnen, damit auch eine kleine Person etwas ausrichten kann. Und wenn der Menfchen die Hilfe von dem Rufs-Planke geben, die Kurbel oder der Kurbme Zappfen von 3 Fuß ist, so ist die Kraffe des Menfchen gegen die Laft, so an der Wurze des kompleessen Zappfens oder der Kurbel hängt, wie 3 zu 1, oder 100 zu 300, und da die Laft nur 100 Pfund ist, so könnten die Mag-Balsken eine Theilung bekommen, daß das Ende an der Kurbme-Stange 2 und das andere Ende an der Kolben-Stange 3 Theile lang wäre, allein dadurch würde man einem Hub von
Discours vom Maschinen-Befen. Tab. LIV.

§. 308.

Mit einem declinirenden Rad 100 Pfund Wasser zu heben.

Es läge 3 C, auf der Kolben-Stange A B Fig. 1 Tab. LIV. 100 Pfund mit der Friction, dieses soll durch ein schragliegenden Rad C D vermacht eines Mannes bewegt werden, der Mann hat 100 Pfund schwer, und gehe ganz auf der Peripherie des Rades bei C oder D. Da nun das Rad bei C so hoch über die horizontal Linie erhoben, daß die Perpendicularr C D der dritte Theil von der Länge C D ist, so folget nach der Demonstration, die Parte generali Tab. XVI. Fig. XV. gegeben worden, daß die Kraft 3

verliert. Wenn nun ein Mann oder kleinere Person von 100 Pfund schwer, auf der äusseren Peripherie am gehörigen Orte gehe, so behalte solche von der blossen Schwere, noch 33 Pfund Kraft übrig; und da das Kamm-Rad F G nur 4 Fuß, oder die Helisse von C D ist, so wird die Kraft 66; Pfund. Das Getriebe H aber, von 3 Fuß in Diameter, verhält sich gegen den krummen Zapfen J von 12 Zoll, wie 2 zu 1; und also wird die Kraft der 66; Zoll mit 1; vermehret und thut 89 Pfund, fehler also noch 11 Pfund an denen 100, die es heben sollen, allein wie solches auf den weitensten Abstand gerechnet werden, ein Schwungs-Rad L vorhanden, so wird es dennoch das seine praktiren, als schon das Schwungs-Rad nicht genugsmäße Schnelligkeit bekomm.

§. 309.

Will der Abstand des Mannes auf 4 Fuß gerechnet und das Rad auch nur 4 Fuß, solcher aber nicht auf der äussersten Scharffe lauffen kann, so ist wohl zu bezeigien, daß das Rad im Radio breiter sein muß als 4 Fuß. Weiter ist auch zu mercken, daß die Person, von 100 Pfund schwer, keine mehr als die Helisse durchs Anstreifen thun kann, als höhster berechnet worden.

Es kann aber dazu dienen, das es desto hurtiger kan umgetrieben werden, damit das Schwungs-Rad einen schnellen Lauff bekommen, daran es ohnedem manges und drohende um so viel süber hat sein müssen. Denn ein Schwungs-Rad, welches langsam gehe, muß hoch sein, damit es Zeit habe es herum kommen, aber je schneller ein Schwungs-Rad gehen soll und muss, je steiler, aber hingegen, wenn es was thun soll, doch schwer gestellungen sein. Denn ein allzuenges Schwungs-Rad kann wegen seiner grossen Peripherie nicht schnell genug herum kommen, und hinderet als die Kraft; daher branckt es ein gutes Judicium, solch ein rechte Proportion zu geben, damit solches weder zu groß noch zu klein werde, welches am besten aus der Praxi zu erlernen. Ich gebe nur gerne, daß ich noch nicht vollig ausgeschieden, wie man denwege eine allgemeine und sichere Anweisung geben, und denen Kunsthiebenden Satisfaction thun solle.

§. 310.
Wie eine Machine mit einem überflüssigen kleinen Rad anzulegen, die Wasser aus voriger Tiefe nennlich 40 Fuß tiefließ heraus zu heben.

Das Auffschlag-Wasser sei eine Quadrat-Rinne von 4 Zoll, das Gefälle zum Rad aber 6 Fuß. Hier kommt es nun hauptsächlich darauf an, daß man die Kraft des Wassers weiß. Weil 4 Zoll stark Wasser continuirlich auf das Rad fallen, dessen Diameter 6 Fuß, so hat man auszurechnen: Was eine Quadrat-Fläche von 4 Zoll dicke und 6 Fuß hoch maget. Man findet in der Tabelle zu Ende dieses Buches, daß 4 Quadrat-Zoll und 12 hoch Wasser 109 2/3 Pechbägen, d.h. aus 6 Fuß bei 32 Pfund. Wenn man nun ein Rad $A B$ Fig. II. Tab. LIV. sich vorstellt, dessen Diameter 6 Fuß, und eine Schnur $C c$ an die Peripherie mit 32 Pfund Gewichte D hängt, um die Welle von 1 Fuß auch eine Schnur schlägt, so wird man auf 96 Pfund an die Schnur der Welle hängen können, daß es mit D in equilibrio sich. Nun ist eben berechnet worden, wenn durch eine dreischellige Röhre das Wasser 40 Fuß soll gehoben werden, die Schwere des Wassers 93 Pf. beträgt, und also 3 Pfund weniger als unter Auffschlag-Wasser mit dem Rad vermag.

Es ist aber die Berechnung wegen der Kraft des Wassers, so es mit dem Rad ausrichtet, gegründet auf das Experiment Tab. LXI. Fig. III. IV. in Theatro generali, da eine Schiene Bny, die um die Peripherie des Rades geleget ist, eben die Kraft hat, als ein Stück von oben der Dièce und Breite, aber nur so lang, als der Diameter des Rades ist, wenn es frey und perpendicular seine Kraft ausüben kann, als hier Tab. LIV. Fig. II. sei um die halbe Peripherie des Rades $A B$ ein Stück Bny, statt einer Röhre voll Wasser $A B C$ gelegt; um die Peripherie des Rades sei auch eine Schnur $A D$ gewunden, wenn man nun an die Schnur ein Stück Bny, so einen an der Dièce und Breite ganz gleich, aber nur so lang als der Diameter $A B$ ist, hänget, wird es mit $A B C$ in equilibrio stehen.

Und eben so verhält sich auch mit dem Wasser, daß man die Schwere des Wassers, so auf dem Rad unter liegt, nicht anders wegen seiner Kraft anzuheben, als eine Röhre von der gleichen Weite und Breite, die aber nur so lang als der Diameter des Rades ist, dem es schon die Röhre $A C B$ auf dem Rad 9 2/3 Fuß ist, und die Perpendicular $A B$ nur 6 Fuß und also über 3 länger und auch so viel an sich schwerer; so thut es doch in Anwendung der Kraft nicht mehr, als das kurze Stück $D E$, wenn es eine völlige Schwere, wie hier, brauchten kan. Derselben, wenn das Spatium $A C B$ eine 4 Zoll weite Röhre mit Wasser wäre, so würde sie über 50 Pfund wagen, und aus der Peripheri C doch nur 32 Pfund Gegen-Gewichte nöthig haben, welches eine Röhre Wasser ebenfalls von 4 Zoll gießet, die gleich 6 Fuß lang ist, wie $A B$ der Diameter des Rades.

Gleichwie solches auch durch die zwei Röhren Tab. III. und V. zuersehen, da 6 Fuß Wasser in der Perpendicularen Höhe von 4 Zoll weit ein Gewichte von 32 Pfund thun, vermittels des Kelvens a in equilibrio erhält, eben wie 9 Fuß Wasser in der eben 4 Zoll weiten Röhre Figura V. thut, bloß weil die Perpendicular Höhe $a b$ auch
Wie durch eine Röhre bey nahe auszurichten, was sonst durch ein so hohes Rad in Diemetro geschehen kann.

§. 312.

Tab. LIV. Figura IV. (auch) eine Röhre A R 4 Zoll weit, durch dieselbe geht ein Röhre A R. 4 Zoll weit, durch dieselbe geht eine Kette ohne Ende mit halben Kugeln a b x. gezeichnet, welche die Röhre accurat ausfüllen, doch daß sie sich nicht zwingen, die Kette aber gehe über eine Scheibe C mit 6 Armen verkehren, die von der halben Kugel geabsobet und zugleich mit demseln getrieben werden, wie vorgelchen Tab. XXXV. Fig. X. Tom I zu sehen, (nur das dort die Scheibe die Kette reitet.)

Die Röhre A R. 4 Zoll weit, und das Wasser darinnen mage 32 Pfund, so wird ein Zugluss Wasser aus der Röhre D. 4 Zoll weit, dieses ausrichten, als wenn es auf ein Rad von 6 Zoll hoch fiel, und wenn an die Welle auch eine Scheibe G befestiget wird; die so hoch als der Hof, darauf die Kette mit den Kugeln lagert, und ein Seil G H darum geschlagen, so würde es mit so viel angeschosnem Gegen-Gewichte auch in equilibrio stehen, oder wenn es etwas leichter, ausfinden.

§. 313.

Dass es nur saft und nicht eben so viel thun soll, als ein Rad von sohler Höhe, ent- sieht hier, thats weil die Kugeln an der Rinne aussohen und sich zwingen, oder es lauffet einigses Wasser vergeblich darrinnen hinweg. Aller werde man ein wenig Wasser nicht zu ahren, und sehr engen Platz hat, da man kein Rad anbringen kann, dörfste dieses noch sinnliche Dünike thun.

Es kan auch die Arth gebrauchet werden, wo wenig Wasser ist, es müssen aber die halben Kugeln in solche Schalen verbandelt werden, so das nur bloß in denen Schalen aber zwischen solchen kein Wasser ist. der Schalen hergegen müssen mehr und solche auch größer, nach dem Zufluss des Wassers sein.

Oder es kan auch mit Kassen gemacht werden, wie vorgelchen Tab. XXIII. und XXV. im ersten Theil dieser Hydraulie zu sehen.

§. 314.

Wen dieses wohl begriffen, kan sich leicht ein Conzept machen, das bloß auf die perpendiculär-Höhe desflaus zu sehen ist, und wie derso eine Berechnung anzustellen bey ei- ner Machine die von Wasser voll getrieben werden. Das Wasser ist also bey dieser Ge- legenheit nicht anders zu considerieren als ein Gewichte, welches an einer Schnur, die um die Peripherie des Rades gewunden angehängt, oder so schwer ist, als die Perpendiculär- Höhe der zufrieden Wasser-Seule oder Röhre.

Also aus der Höhe des Falls, Menge des Zuflusses vom Auffschlag-Wasser, als der Kraft und aus der Tiefe oder Höhe, dafin die Last zu sehen, kann man auch gleich den Lieberalsch machen: Wie viel Last oder Wasser kan gehoben werden.

Nehmlich wenn 100 Pfund Wasser in einer Minute 10 Zoll tieff herab fallen, so müssen sie theorectise wieder bey nahe 100 Pfund eben in einer Minute 10 Zoll hoch erheben.
können, ich sage bey nahe, denn die Kraft muss. Notwendig schwerer sein. Ist aber die Lass oder Wasser 20 fuss tiefe zu hebren, so wird es nur die Wasser, noch nicht 50 Pfund bestragen; auf 40 fuss hoch nicht ein Quart oder 25 Pf. u. f. s.

§. 315.

Also wenn man weiss, wie viel aufschiag-Wasser man hat, welches hydraulisch zusießet, und wie tief man sein Wasser, als die Lass, zu hbben, man theoretice sagen kan: Wie viel Wasser in einer gewissen Zeit zu schaffen; die Machineannotation dem Wasser und Weise, als es in der Welt zu erdenken sein, angelegte, was hernach feiste, das wird durch die Friction der Machine und was zur Uberwucht nächst, verursacht.

Auf gleiche Weise solle man auch, aus dem in gewisser Zeit ausgebrennter Wasser und dessen Tiefe auf den Fall des aufschiag-Wassers addieren können: Wie viel aufschiag-Wasser oder Kraft vorhanden wäre, allein die vielen feister, hauptsächlich aber die Friction dieser Maschinen, solcher solches in eine große Ungerechtigkeit.

§. 316.

Ehe wir hiervon abgehen, soll noch ein Eremple folgen.

Es sen das Gefälle 16 fuss, die Tiefe des Wassers, als Lass, 64 fuss, ist also die Tiefe der Lass 4 mal größer, als der Fall des aufschiag-Wassers, was sehr nur, so viel fan heraus gehoben werden als aufschiag-Wasser ist: Und daher, so in einer Minute 24 Centner Wasser in die 16 fuss herab fliegen, so wolten theoretice in 3 Minuten 6 Centner der vierten Theil gehoben werden; also auch wenn der Ausfluss einer Nohre von 12 fuss mit 16 fuss lang wäre, den 3 Cent. wäge, in Schach oder Brunnen einer 7 Zolligen Nohre von 64 fuss hoch stünde, und würde die Lass des Wassers umgeführ 7 Cent. 62 Pfund betragen, den fuss zu 13 Pfund gerechnet, wozu zu erheben, wie die Machine zu proportioniren ist also, das Lass und Kraft nicht nur in equilibrio stehen, sondern die Kraft fast noch 50 Pfund Uebervucht hat. Dahero wenn man eine Püchel oder Lasskunst anlegen wolle, und diesselbe nicht mehr als eine Kassenh. Kunst friktion hätte, zu viel nur 7 Zolligen Nohre ein fuss, so gross in Diametro als das Wasserbad können genoms, werden, oder wenn dieser nur halb so gross, entweder zwei Zollige Nohren, oder eine, die noch einmal so viel Wasser faßt, dienen könnne.

§. 317.

Ferner aber ist nicht zu vergessen.

Was für ein Untersehied zu machen zwischen einer perpendicularen Nohre, die ganz voll Wasser sicher, wie zuvor-heren in der III. Fig. Tab. LIV. gezeigt worden und zwischen dem Wasser, welches auf der halben Peripherie eines Raubes lieget.

Weil solches mit Schaufen verzehren, so können die meisten davon recht voll seyn, wie solches im Theatro generalis Tabula LXIII. Figura II. deutlich vor Augen gezeigt worden. Dahero mangel ein mercklicher, wenn man nur auf das Wasser, so auf dem Rad lieget, seyn will; so aber hier nicht seyn muss, sondern man rechter nur die perpendiculaer Höhe, auch wie viel Wasser beständig zusießt und bekomm daber kein Facit, ohne das
Discours vom Machinen-Wesen, Tab. LIV.

159

daß man zu besorgen hat: Ob und wieviel die Schaufeln sind. Aus dieser Ursache fallt solches bey unterschlächtigen Rädern weg, und bleiben nur übrig zu berechnen die Höhe des Falles, diewegen abzumuth die Application auf die Last zu machen ist, und die Machine darrnach einzurichten, eben wie bey vägierer Art gesagt worden. Denn hat ein Flüß, so ein unterschlächtiges Rad treibt, 2 Fuß Gefälle, so muß dadurch bey nahe in eben der Zeit, 100 Cent. Wasser unter dem Rad sinnlieber, auch 100 Cent. wieder 2 Fuß hoch geheben werden; oder wenn 100 Fuß Höhe sein solte, würde es bey der Zeit 2 Centner betrages n. s. s. Also das ein vor allem, aus der dieselben Höhe des Falles und Menge des zugleichenden Wassers gar leichte die Rechnung machen: Wie viel Wasser auf eine gewisse Tiefe oder Höhe zu bringen, ohne daß man einige Reflexion auf die Machine hat; denn theoretisch muß eine Machine so viel kann als die andere, was aber hernach sehr, wird durch dieobel gearbeitet Machine und dazwischen entstehende Friction, auch durch ungeschickte Application der Krafft verunfärchet.

§. 318.

Ob nun bissahero vieles, ja fast überflüssig gesagt worden; wie durch den Fall eine Machine zu berechnen, man sich doch mehr lange nicht genug zu wissen, wo viel in einer gewissen Zeit mit einem beständigen Flüß oder Auffloß-Wasser auszurichten.

Aus der Weite der Röhren oder Rinnen, und der Höhe des Falles kann man zwar wissen wie viel man Krafft habe oder Gegen-Gewicht zur Last; aber man weiß bestrengen noch nicht: Wie viel in einer gewissen Zeit damit gethan oder verrichtet werden kann, nenn sich wie schnell das Wasser läuft; denn es kann aus einer 4 Zolligen Rinne in einer Minute 806 Maas, wenn namentlich das Wasser 13 Fuß über der Deckung scheit, laufen, und so viel Wasser geben, als durch eine Röhre von 3 Zellen, wenn das Wasser nicht gedruckt wird, es können auch an statt 806 Maas nur 64 Rinnen heraus laufen, wenn der Druck des Wassers nur 1 Fuß ist, wie bier von weitläufiger im Theatro generali §. 472. und folgende gezeigt worden. Und also muß man auch wissen: Wie viel Wasser in einer Minute oder Stunde zuleiher, ehe man sagen kann, wie viel Wasser damit wieder zu erheben ist. Solches geschiedt, theils wenn man das misst, so in einer Stunde herzu kommt, oder eines Rad abhält; oder man misst das Wasser, welches aus einem Umschlag des Rades kommt; oder man indicirt 256 dem falle des Wassers, so es vor dem Rade hat; ob aber man unterfähert die Schwelligkeit, Tiefe und Weite des Geräumes vor dem Rad. Hierzu ist vieles zu erlernen aus ist angezogenen Theatro generali von 469. s. bis 516. Vor allem Dinget gehörnt ein accurates Chronometerum dazu, so eine gute Minuten-und Secunden-Uhr, denn an diese Minuttten-Uhr kann man sich nicht verlassen, welches auch nur ein einfacher Perpendicul kann, der ganze oder halbe Seconden vibriert. Ich habe von beiden ein Erempel im Theatro generali Tabula LVIII. Fig. VI. Und ist darauf die Berechnung zu einer Wasser-Kunst, wenn sie mit Wasser getrieben wird, so leicht nicht, als sich mancher einbildet, abendsperrung weiß uns die Friction, die wir meist anders nicht als ex Effaz erwirken können, das meiste zuhun macht.

§. 319.

Zu Berechnung einer Wasser-Kunst, so mit Wasser getrieben wird, ist zum allerwenigsten zu wissen nöbig.

1. Wie
1. Wie viel Aufstieg Wasser, oder wie weit die Nöhe, Lente oder Schöß-Emme ist, dadurch das Wasser aus dem Rad kommt.
2. Wie schnell das Wasser lauft nach einer Sekunden-Uhr.
3. Wie stark der Perpendicular Fall des Wassers.
4. Wie schwer die fallende Wasser-Säule nach dem Diameter des Rades, oder auch nur nach der Höhe des perpendicularen Falles.
5. Wie viel Wasser auf einen Umlauf des Rades kommt.
6. Wie hoch das Rad im Diameter.
7. Wie hoch der Huls des krümmer Zufens.
8. Wie stark die Kraft, so durch den Schwing erhalten wird, weil es nicht durchgends vollauf zusamm hat.
10. Wie tief das Wasser hinaus zu heben.

N.B. Wenn die Kraft genau wiebe, so kann man blos durch die Tiefe wissen, wie viel Wasser nach der Theorie sollte gehoben werden, die Machine mag nun angelegt sein, wie sie will. Damit man aber die Anlegung oder Hän dung einer solchen Kunst wisse, wie die Eintheilung zu machen, ob es eine Kunst nach rechter Proportion der Kraft angelegt sey, so ist zu wissen:

11. Wie weit die Kolben-Röhren.

N.B. Das Wasser muss nicht berechnet werden, wie es sich müßte in denen viel bissigen Röhren, Ansek und Steckel-Kiel befinden; denn dieses giebt eine ganz falsche Rechnung, wie solches schon vorläufig bey denen Druck- und Saug-Merenken erinnert werden
14. Wie viel es auf einmal ausgießt, oder wie viel Wasser in einer Minute heraus kommt.

Moraus zu erlernen, wie viel die Kunst weniger chut, als sie nach der Theorie thun sollte.

§. 320.

Von unterscheidlichen Zwischen-Geschirren.

Das erste Zwischen-Geschirr soll das oben vorgestellte Schieß-Berce Tab.XL Fig.I. sein; denn ob schon dasselbe nicht approbi, sondern die Kurbel demselben vorziehe, dennoch soll es uns als ein Exempel dienen, eine Rechnung darnach anzustellen, ob es schon wegen des allzu niedrigen Rades nicht zu imiteren ist.

In voriger Figur wurde das Stern-Rad, so mit der halbsgezahnten Scheibe an einer Welle sich der durch ein Schwing-Rad umgetrieben; hier soll statt dieses Stern-Rades ein Masster-Rad seyn, namentlich Fig. I. Tab IV. A B. dessen Diameter 3 Fuß, das halbsgezahnte Rad C von 1 Fuß, dieses giebt in der Peripherie 37 2/3 Zoll, die Säule ist 18 3 2/3 Zoll, aber die Stange D E wird nicht so lang sein und wieder gezeugt. Wenn nun diese Stange D E so gleich nach der Kolben-Röhre gehen, oder selbst daran befestigt ist, und bleibt die vorige 3 Zoll Weite und 40 Fuß hohe Röhre, da die Laste 93 Pfund gerechnet ist, so
so wird gefragt? Wie viel Kraft oder Auffschlag-Wasser nütz? Der Radius des halb-gezähnten Kades verhält sich zum Radius des Wasser-Rades wie 1 zu 3; also ist zu 93 Pfund Last, 3 Pfund theoretisch nütz., und da unser Rades perpendiculare Höhe 3 Fuß, so ist nützlich, eine Höhre zu suchen oder zu berechnen, die etliche 30 Pfund Wasser auf 3 Fuß hoch fällt. Euchert ihr nach, so werdet ihr finden, dass eine 7/12e kleine Höhre auf einem Fuß, etwa über 12 Pfund giebelt, und also drei Fuß 36; weil aber keine Friction gefunden ist, dürfte es eher zu wenig als zu viel sein.

Doch ist hieraus zu sehen, dass die Rnme zum Auffschlag-Wasser, wenn es mit der Schneidigkeit zugleich fest gehen soll, nicht unter 7 Zoll in Diameter sein muss. Alleine wir hier die Maschine nur auf die bestste hebet, und auf die andere ledig gelchet, so wird die Krafft nicht allz nütz sein, wenn man hier auf die durch den Schuwmn akquirirt Krafft keinen Staat zumachen, weil das Rad zu niedrig ist, worauf man aber ein etwas schwaches Schwinng-Rad anführint, dürfte gegen nichts an der Krafft erhard werden.

No aber die Maschine als angesehen, wie Figure II. das der Neur eine Creutz-Welle FG Hi fasset, und zwecklos, den einen in Sin und den andern in Stichmater, her, so wird keine Krafft von den 36 Pfunden übrig bleiben, ja ich halte davor, dass praktisch, wegen der Friction, etliche 40 wohlich nicht zulässig sein werden, und daher gar eine 7/12e-sliche, ge Höhre nütz ist.

§. 322.

Setzt das Auffschlag-Wasser aber nur so stark sein, als eine Höhre von 4 Zoll und man will das halb-gezähnte Rad von einem Fuß behalten, und nur das Wasser-Rad durch einrichten, so muss man erlsich ausrechen, wie hoch das Rad sein muss. Ich will deswegen die kleine sonderliche Redenziffert abgeben, eine ganz einfache Art, und welche es gar leicht begegen können, darzustellung: Man bat auf einmal auf zweierlei zu sehen, erlsich auf die Schmre des Werras und Länge der Höhren, und zum andern auf dem Abscheid dieser Krafft, denn um so vielmehr die Krafft nur 4 Pfund 5 Zoll schwieriger wird, um so vielmehr, dass das Rad um einen Zoll höher, und um einen Zoll weiter von der Nisse oder Achse, und damit man bezides vor August haben, so wird erlsich berechnet, wieviel Pfund nützlich fand, auf 1, 2, 3, 4, 5 THEWE u. f., des Abscheid der Krafft, von dem Nisse-Punck, und weil die Last 6 Zoll oder 2 Fuß von selbsm absethet, oder die Stärke des halb-gezähnten Rades so weit absethet, so sind auch die THEWE auf 6 Zoll zu rechnen, als 6 Zoll Abscheid der erste THEWE, berucht zum Gegengewicht 93 Pfund Krafft, als die Krafft schwer ist; der andere THEWE, so 1 Fuß in, berucht 45 Pfund, der dritte 3, der vierte aber zwei Fuß, 224/12 Pfund, der fünfte 18, der sechste 3, der siebente 15, 12 Pfund, der achte oder 4 Fuß 11/12 Pfund, u. f. f.

Zum andern, so giebet eine Höhre 4 Zoll weit und 4 Fuß lang, 4 Pfund 5 Zoll Wasser; 3 Zoll 8 Pfund 10 Roth, 3 Zoll 12 Pfund 15 Roth, 4 Zoll 16 Pfund 20 Roth, u. f. f. So setz solches, damit es besser in die Augen fällt, untersciannder, wie hier:

<table>
<thead>
<tr>
<th>Fuß.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>halber Fuß.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Lass</td>
<td>93 Pfund.</td>
<td>46</td>
<td>31 Pfund.</td>
<td>23 Pfund.</td>
</tr>
<tr>
<td>Krafft.</td>
<td>4 Pfund.</td>
<td>5 Roth.</td>
<td>8 Pf.</td>
<td>10 Roth.</td>
</tr>
</tbody>
</table>

Hieraus siehet man, dass zum Crempel: Auf zwei Fuß oder vier halbe Fuß Abscheid, 224/12 Pfund Krafft nützlich, aber eine Höhre von 2 Fuß Länge, und 4 Zoll Weite 8 Pfund zu Theor. Hydraul. II. THEWE.

S 6

Lotb
Discours vom Maschinen Wesen. Tab. LIV.

Lotz weight, which is too little as is.

Hingegen 8 halbe Schübe oder 4 Fuß Abstand, braucht 1 Pfund, und eine höhere Wasser von so viel Fuß; wiegt 16 Pfund von 20 Lotz; welches schon bei nahe 5 Pfund zuviel ist, aber der Abstand von 7 halben Schüben, braucht 12 Pfund Kräfte, und eine höhere Wasser von 3; Fuß, also 12 Pfund und 18 Lotz; also, daß ein Rad, dessen Diameter 3; Fuß hoch, mit einer höhere Wasser von 4 Zoll weit, eine Kräfte, durch das halb-geschnitten Rad, über 4; Pfund ausrichten kann, in diesem Abstand aber 13 und 3; theoretisch nicht ist; dazwischen gar leicht die Proportion zu finden. Zum Exercitio kann noch ein Exempel dienen, und zwar die Machine Tabula XXXX. Fig. VIII. die wir davor halten, daß sie zu Augsburg sich befunden. Wir wollen aber nur zwei Stiele und halbgeschnitten Räder nehmen, und denken die Last des Wassers, so jedem Kolben wiederein, 400 Pfund, der Hub des Kolbens soll bei nahe 28 Zoll sein. Hierzu die Breite der Scheibe zu befienden, so nehme die 28 Zoll doppelt, weil die Scheibe nur die Hälfte Jahre hat, und hafft dieses die Peripherie sehr, gleich etwas weniger als 18 Zoll Diameter, davor wir aber 13 behalten. Als der Diameter der Scheibe 18; Fuß; hierzu ist die Kräfte wieder die 40 gleich Nächte zu einem überhöhnten Rad, und der Fall so hoch, als er verlangt wird. Aber doch die Proportion von der Höhe des Rades zu finden, so formirt man wieder einen nach dieser Proportion abgeteilten Stab, davon das grüne Ende oder der Radius der halb-geschnitten Scheibe 12; Fuß oder 2; Ellen ist, welchen Bruch wir behalten wollen.

§. 324.

I. Abstand von der Achse |
<table>
<thead>
<tr>
<th>1.</th>
<th>2.</th>
<th>3.</th>
<th>4.</th>
<th>5.</th>
<th>6.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bürtel-Ellen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>2.</td>
<td>3.</td>
<td>4.</td>
<td>5.</td>
<td>6.</td>
</tr>
<tr>
<td>Die Schwere des Gegengewichtes 300.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100.</td>
<td>66.</td>
<td>50.</td>
<td>40.</td>
<td>33.</td>
<td></td>
</tr>
<tr>
<td>IV. Länge der Räder nach Schüben</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Fuß.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Fuß.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 Fuß.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Die Schwere des Wassers in Räden</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 Pf 15 Loth.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 Pf. 30 L.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37 Pf. 13 L.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ausz diesen zeiget sich, daß das Rad 9 Fuß hoch sein muß, so wird eine hippocratäre 48;gale Räder Wasser 37 Pfund 13 Loth wiegen, da die Kräfte oder Gegen-Gewichte zu 200 Pfund im ganzen Theil des Abstandes oder 2 vom Zapfen 32; Pfund ist.

§. 325.

Hiermit will vor bissmäß bischen Discurs und Anweisung beschloßen, oboblich noch vieles rühstandig, so aber auf eine andre Zeit und Gelegenheit, aus gemisrer Uebervision verteilen muß. Inzwischen verhoffe, daß der gewisse Lezer vieles, nur in diesem wenigsten Bogen, werde bemahlen gedenken haben, so er fünfzehn malen schreine müßte, oder vielleicht gar nicht finden wird. Abänderlich hind er nochmaliges darinnen bestärken werden: Als es nemlich unmöglich sey, eine Machine zu machen, welche so viel präsiren kann als die Berechnung nach der Theorie betracht, und vornheinlich, daß die simpelsten Maschinen und die am wenigsten belästiger sind, die allerbesten, und das daher diejenigen, so ein anderes vorgeben, sich mit anderen betrügen und verführen. Davor ist aber zu warnen mich verbunden geachtet.

§. 326.

Dreiscasseln die Schwere des Wassers zu berechnen.

Indem sechs Kassel an berechnet werden, wenn man nicht zuwider die Schwere des Wassers
Tafel zu Berechnung der Wasser.

Wassers neigt, so habe drey unterschiedliche Tafeln deswegen hier beyzigen wollen. Es sind zwar selbig in Theatro generalli auch zu finden, weil es aber verdrifflich allemahl eingedrungen ist, dass es beyzigen nicht stets beizienen hat, so wird man solches nicht als etwas überschüssiges achten.

I. Tafel zu der Schwere des Wassers nach Cylinder-Zoll gerechnet, oder wenn dessen Diameter mit dem Quadrat-Maass gemessen, dass das selbig allemaal 12 Zoll hoch ist.

<table>
<thead>
<tr>
<th>Joll des Inhaltes</th>
<th>Höhe des Cylinders</th>
<th>Schwere des Wassers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12</td>
<td>8. 1\frac{1}{12}</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>16. 2\frac{1}{12}</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>24. 3\frac{1}{12}</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>33. 3\frac{1}{12}</td>
</tr>
<tr>
<td>5</td>
<td>12</td>
<td>41. 2\frac{1}{12}</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>49. 3\frac{1}{12}</td>
</tr>
<tr>
<td>7</td>
<td>12</td>
<td>58. 2\frac{1}{12}</td>
</tr>
<tr>
<td>8</td>
<td>12</td>
<td>66. 2\frac{1}{12}</td>
</tr>
<tr>
<td>9</td>
<td>12</td>
<td>74. 3\frac{1}{12}</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>83. 2\frac{1}{12}</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>91. 2\frac{1}{12}</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>99. 3\frac{1}{12}</td>
</tr>
<tr>
<td>13</td>
<td>12</td>
<td>108. 0\frac{1}{12}</td>
</tr>
<tr>
<td>14</td>
<td>12</td>
<td>116. 2\frac{1}{12}</td>
</tr>
<tr>
<td>15</td>
<td>12</td>
<td>124. 3\frac{1}{12}</td>
</tr>
<tr>
<td>16</td>
<td>12</td>
<td>133. 0\frac{1}{12}</td>
</tr>
<tr>
<td>17</td>
<td>12</td>
<td>141. 2\frac{1}{12}</td>
</tr>
<tr>
<td>18</td>
<td>12</td>
<td>149. 3\frac{1}{12}</td>
</tr>
<tr>
<td>19</td>
<td>12</td>
<td>158. 0\frac{1}{12}</td>
</tr>
<tr>
<td>20</td>
<td>12</td>
<td>166. 2\frac{1}{12}</td>
</tr>
<tr>
<td>21</td>
<td>12</td>
<td>174. 3\frac{1}{12}</td>
</tr>
<tr>
<td>22</td>
<td>12</td>
<td>183. 0\frac{1}{12}</td>
</tr>
<tr>
<td>23</td>
<td>12</td>
<td>191. 1\frac{1}{12}</td>
</tr>
<tr>
<td>24</td>
<td>12</td>
<td>199. 3\frac{1}{12}</td>
</tr>
<tr>
<td>25</td>
<td>12</td>
<td>208. 0\frac{1}{12}</td>
</tr>
<tr>
<td>26</td>
<td>12</td>
<td>216. 0\frac{1}{12}</td>
</tr>
<tr>
<td>27</td>
<td>12</td>
<td>224. 3\frac{1}{12}</td>
</tr>
<tr>
<td>28</td>
<td>12</td>
<td>233. 0\frac{1}{12}</td>
</tr>
<tr>
<td>29</td>
<td>12</td>
<td>241. 1\frac{1}{12}</td>
</tr>
<tr>
<td>30</td>
<td>12</td>
<td>249. 3\frac{1}{12}</td>
</tr>
</tbody>
</table>
Tafeln zu Berechnung der Wasser.

§ 327.

II. Tafel die Schwere des Wassers eines Zylinders nach verschiedenen Zahlen des Diameters, und wann solcher allehmal 12 Zoll hoch ist.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

§ 328.

III. Tafel, zu vierseitigen oder Quadrat-Röhren, wenn der Diamenter oder eine Seite mit dem ordentlichen Maßstab gemessen wird.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Der
Der Gebrauch dieser drei Tafeln ist folgender:

Die dritte Tafel ist eingerichtet auf vierzigte Röhren, weil solche wegen der Mischung viel mehr Wasser fassen als eine runde, wenn die eine Seite mit einem ordentlichen Fuß-Maass gemessen wird, so giebet die Zahl der dritten Spalte C so gleich an, wie schwier das Wasser in einer solchen Röhre, die 12 Zoll hoch ist, als: ihr findet, daß eine Röhre nach dem ordentlichen Zoll-Stab, (aber nicht nach dem Quadrat-Maass-Stab wie in Theatro generali §. 444, unrichtig gemessen worden,) 15 Zoll hält, so weisst die Tafel, das das Wasser 265 Lech oder 8 Pfund 9 Lech. 3/16. Nu. schwier ist. u. s. f. mit anderen.

Weiter findet diese Rechnung nur statt auf rein und plausibel Wasser, alleine von solcher trüber mit Schmud und mit Salz, als die Seen, vermengen ist, so muß es notwendig schwerer sein. Aber auch dieses zu erfahren, könnte iehr ohne Beiläufigkeit, etwa 10 Pfund mehr oder weniger rein Wasser in ein Gefäß gießen, und genau merken, wie weit es voll wird, und abends von der See der See des Gefäßes auch so weit füllen, und dieses genau auswogen; dieses kann auch als zum Fundament auf alle Weiten der Röhren dienen, als das Salz-Wasser von gleicher Quantität volige 15 Pfund, da das rein Wasser 10 Pf. wiegen, und daß in einer Röhre, wenn es rein Wasser, 26 Pfund sein müßte, so zeigt in die Regel Detri: 10 Pfund giebet 13, was 26? fac. 33 1/16 Pfund.