CHAPTER VII.
DYNAMICS OF MECHANISM.

§ 23. LINEAR AND ANGULAR VELOCITY.

WE have now completed our examination of the nature
of mechanisms, as well as of a series of the principal kine-
matic problems connected with them. So far we have been
able to work by methods which are in reality purely geo-
metrical, and have not found it necessary to introduce
questions of force or mass at all except to show that they
might—for that part of our work—be put upon one side. We
now leave the Kinematics for the Dynamics of Mechanism,
and come to problems which involve directly questions
connected with forces and the balancing of forces. Before
we are in a position to deal with these problems it will be
necessary to give some further attention to the meanings
and relations of the ideas which are involved in them,
velocity, acceleration, force, mass, and so on.

We have hitherto looked at motion merely as change of
position, and in reference to velocity we have only noticed
the relative (and not the actual) velocities of different points
in the same body or mechanism at the same time. We
have now to deal with problems which involve the deter-

mination of actual velocities and the velocities of the same
M
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point at different instants, problems which cannot be under-
stood or solved without continual reference to the forces
causing motion or change of motion.

We have distinguished (§ 15) between linear velocity
and angular velocity. The former has to do with the
distance, measured in ordinary length units, as feet, traversed
by a point in a given time, while the latter is measured by
the angle swept through by the radius of the pointin a given
time. Although something has already (in § 15) been said
about the relation between linear and angular vclocities, 1t
is necessary to look at it here somewhat more in detail.

We have already seen (§ 7) that every body which has
plane motion must be rotating about a point? in the plane.
If this point be infinitely distant (like the virtual centre of a
sliding pair), all the points in the body are moving at every
instant in parallel straight lines and with the same velocity.
In this motion of translation (which is thus merely a special
case of motion of rotation) the velocity of the body is fully
known if that of any one of its points be known. Ze rate
of motion of any point in ils given direction of motion is the
linear velocity of the point, and 1n this case, to which we shall
in the first instance confine ourselves, the linear velocity of
any point is also the linear velocity of the whole body.

When we say that a body has a (linear) velocity 5, we
mean that it moves at a rate which, 1f continued unchanged
for a unit of time, would carry it through five units of
distance in the given direction. The units of time and
distance are commonly seconds and feet respectively, so that
in the case supposed we should mean that the rate of motion

! The body, of course, rotates about an axis, but we have seen that
the point which is the intersection of this axis with any plane parallel
to the plane of motion, may be taken instead of the axis if we take
instead of the body its section by or projecticn on the plane, See

§9.
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of the point was such as would carry it through five feet in
a second if it continued unchanged for that period.

But from the mere statement that a body has a linear
velocity 5 af a given instant, we cannot infer that 1t
possesses that velocity during any length of time, that, for
instance, it will actually move five feet in a second, or still
less that it will move 300 feget in a minute. We know only
that at one particular instant it was moving at a rate which,
if continued without change for a second, would have carried
it through five feet in that time. This is not in any way
inconsistent with its actual movement in the second being
three feet or twenty feet instead of five, for its velocity, or
rate of motion, may change altogether before the second 1s
finished. _ |

It has to be particularly remembered also that such a
numerical value as that just given refers only to the magni-
fude of the velocity, and does not give any information
about its dzrection, which, as we shall see, is in many cases
equally important.

The velocity of a body is thus what may be called an
f‘instantaneous ” quantity. Af¢ a certain instant the body
1s moving at such and such a rate. The fact that this rate
was quite different the instant before, and will be again
quite different the instant after, does not in the least affect
the matter, When, therefore, we represent the (instantaneous)
velocity of a body by a line A A,, we do not mean that the
- body actually moves from A to A,in a second, but only that
when it is at A it is moving at a rate and in a direction which
Wwould bring it to A, in a second if only rate and direction
continued unaltered for so long.

It happens, however, that we have often to concern our-
SEIVB§ with the mean velocity which a body has during a
certain interval of time, that is to say, the mean of the
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velocities which it has at each successive instant throughout
that time, instead of its velocity at one instant only. But
a velocity over any interval of time may be uniform or
zarying. In the former case the velocity is the same at
every instant, and the mean velocity during the whole time
is one and the same with the instantaneous velocity at any
instant whatever during the time. If a body have a uniform
velocity 7, and pass through a distance s in # seconds the
relation between the three quantities is simply

5§ = vyl

This relation is equally true if z, be the mean velocity
of a body which has had varying velocity during the time
¢; when, that is, its velocities at different instants during
the time have been different. But in that case the acfual
velocity might be 7, at perhaps only one instant during the
whole time, differing from it more or less at all other
instants.

In the case of a varying velocity the rate of variation
may itself (as we shall see in § 24) be uniform or varying,
In the former case the mean velocity is the arithmetical
mean between 7,, the initial velocity, and w,, the final
velocity,! or

vyt 7 s = (Lt i
2 2

Z"ﬂ:

In such a case the mean velocity is therefore very easily
found, and the actual velocity at any instant scarcely less
easily. Fig. 92 (on p. 198) is a velocity diagram for such a
case, where ; = 1°5 ft. per second and v, = 5 ft. per second.
7, is therefore 3-25 feet per second, which is the actual

1 If the sense of 7, is opposite to that of z, it must have the minus

sign prefixed to it, and 7, :zh__'l;_(é__'ﬂ.ﬂ) =% __z Yq
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velocity at the end of half the time interval, or two and a-half
seconds from the start. 7z,is of course the mean height
of the line whose ordinates represent the velocities.

But in the case of a body moving with some irregularly
varying velocity, such as that shown by the diagram (Fig.
90) on p. 194, the mean velocity can only be found approxi-
mately by taking the mean of the actual velocities at a
sufficient number of different points. The arithmetical
mean of the initial and final velocities may, in such a case,
differ to any extent from the real mean, and could not be
substituted for it.

It is very important in what follows that the distinction
which we have just enforced between the velocity of a body
at a given instant and the mean of its velocities ata number
of successive instants, should be kept in mind, a distinction
which applies equally to angular and to linear velocities.

The linear velocity of a body, as a quantity having mag-
nitude, sense, and direction, is a * directed quantity,” or
vector, which has. been our justification for the representation
of velocities by lines having just those properties, and which
justifies us in applying all the graphic rules of vector addi-
tion, &c. to lines representing linear velocities.

We have now to look at the case where a body (plane
motion being always presupposed) is furning about a point
@l a finite distance, so that its motion is a simple rofation.
‘Here, as we have seen, the linear velocity of every point is
Proportional to its radius, so that all points not having the
Same radius have different linear velocities. But although
the points of a rotating body have so different linear velo-
Clties, yet as long as the form of the body is not itself under-
going change, all points in it move through the same angle
In the same time. Otherwise, as we said in § 7, different
parts of it must have had different motions, and this is
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impossible as long as the body remains rigid. The fact
that all the points of a rotating body move through the
same angle in the same time is expressed by saying that
every point in it has the same angular velocity.

Just as either a foot, a yard, or a mile might be used as
a unit for linear motion, so several different units might
be used for angular motion—a revolution,! for instance,
or a degree. There are practical conveniences, however, in
taking for the unit of angular motion the angle subtended
by an arc whose length is equal to its radius, which is
(%62)&01' about 57°3°. As the circumference of a circle of

w
radius 7 is 2 = 7, the number of units equal to » in one com-
plete revolution Is 2_1_:;- = 2, which 1s numerically equal
to the distance moved through in one revolution by a point
at unit radius. Further, if the body make 7 revolutions per
second, it moves through 2=z angular units per second,
which is again numerically equal to the number of feet tra-
versed per second by a point at umt radius.

The number 2 7= is called the angular velocity of the
body, an expression which may be understood to mean
either the rate at which the whole body 1s turning about its
axis, expressed in angular units per second, or the rate at
which any point in it having a radius equal to unity is mov-
ing, expressed in feet per second. The velocity in feet per
second of any point in the body whose radius i1s 7 feet is
obtained by multiplying the angular velocity of the body
by the radius of the point, and 1s therefore equal to
27 n7.

Where a body has a motion of translation only, it is often

1 In cases where the revolution is used as the unit of angular motion
the time unit is most commonly a minute instead of a second.
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sufficient for us to take the velocity of any point as repre-
senting that of the whole body, just as if the whole body
were concentrated at that point. But where the body is
in rotation about a point at a finite distance, and in all
problems which involve the action of forces on the body,
and consequently involve consideration of its mass, we
may suppose the whole mass to be concentrated only at
any point among those which have one particular radius.
This radius we may call the radius of inertia of the
body,! and any point having this radius may be called a
centre of inertia of the body. We cannot take its exist-
ence for granted without proof, and the proof will be found in
§ 32. Its position is such that if the whole mass
of the body were concentrated there in one small
particle,? the action of any forces on that particle
would be the same as their action on the whole
actual body.

The radius of inertia is not equal to the virtual radius of
the centre of gravity, and indeed becomes widely different
from it when the virtual radius is small relatively to the
dimensions of the body.

If, therefore, R be the radius of inertia, in feet, of a body
revolving about a given point (whether a virtual or per-
Manent centre) with an angular velocity 2« 7, the body
Mmay be represented by a particle of equal mass to itself
having a linear velocity 2 # 72 R in a given direction, or
hormal to a given radius.

The linear velocity of any point in a rotating body is

' The terms “ radius of gyration” or ‘¢ radius of oscillation,”” which
31‘3 Sometimes used for it, are, unfortunately, very inconvenient.

The ““ particle ” is supposed to be indefinitely small, so that its size

may be entirely negligible. In the case of a body rotating about its

ideg] ontre of - ' 1 ing takes the place of this
idea] parti (:1:. gravity, a thin cylinder or ring takes P
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thus a moment, and is numerically equal to the product
of the angular velocity possessed in common by all
the points of the body and the radius of the particular
point in question.! The linear velocity of a point In a
rotating body may therefore be represented by an area.
It will be numerically equal to twice the area of the
triangle whose base is the radius of the point and whose
height is the angular velocity of the body.

Thus in Fig. 85 let a body be turning about O with an
angular velocity ,,  The linear velocities of the points

F1c. Bs.

A, B, and C are proportional to the areas of the triangles
AA*O, BBO, and CC'O, if AA', BB, and CC! are each
made equal to 7,, and set off at right angles to their respec-
tive radii. The numerical value of the linear velocity of each
point is obtained by doubling the area of the triangle in
each case.?

In general the different points of a rotating body are

1 Tt is presupposed that the units of linear and angular velocities are
those stated above.

2 1f we applied this to the case of translation we should have the
radius of every point _lnF{nitel_}f great and the motion of the body
measured in angular units infinitely small. The linear velocity would,

therefore, come out in the form » x 0, which cannot be further utilised
directly.
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moving in different directions, only those lying on the same
radius having the same direction, but every point (§ 7)
is moving at right angles to its own virtual radius.

§ 2. LINEAR VELOCITY—TANGENTIAL
ACCELERATION.

So far as we know, a body which is at rest will remain
always at rest, a body which is in motion will move for ever
in the same direction with unchanged velocity, unless some
€xtraneous cause alter the condition of rest or of uniform
‘motion. Any such change is called an acceleration, and
the “cause” producing acceleration is called force. It is
hecessary that the meaning and relations of both these
expressions should be examined in some detail, and in the
Present and next following sections we shall consider the
former of them.

A velocity ! has magnitude, sense, and direction. Any or
all of these may undergo change, and any such
change is called an acceleration. But a change in
Sense is really only a change in magnitude. If, for instance,
a body be moving with a velocity of 10 in a given direction
al:ld Seénse, and its velocity be changed to 5 in the same
d}rection but in the opposite sense, we can say that its velo-
City has been changed from + 10 to — 5, and therefore the
whole change is — 1 5, and can be entirely measured as a
change of magnitude. We may therefore say that accelera-
tion must be of one or other (or both) of two kinds, one
affecting the magnitude and the other the direction of a

1 See also §§ 14 and 15.
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velocity. The first we shall call tangential acceleration,
and the second radial acceleration. We shall in this
section consider only the way in which changes in the mag-
nitudes of velocities, or tangential accelerations, are related
to each other and measured. |

If thevelocity of a body change from five feet per second to
eleven, the magnitude of its velocity has been increased by
six feet per second, that is, it has received a certain tangential
acceleration, It is very important to notice, however, that
we do not therefore say that it has received an acceleration
of six feet per second, any more than we would say that the
original velocity of the body was five feet. A foot is a unit
of distance—a foot-per-second 1is the unit of velocity; and
for acceleration our unit must be not a foot-per-second,
but a foor-per-second of velocity added in one second, or more
shortly a foot-second per second. A finite increase of
velocity must have occupied some finite interval of time,
say one second, or three. But there is just as much differ-
ence between an increase of velocity which occupies only
one second and one which 1s spread over three, that there
is between the traversing of a certain distance in one second
or in three. In the latter case the velocity is in the one instance
three times as great as in the other—in the former case the
acceleration 1s in one instance three times as great as in the
other.

We have seen in the last section that we may have either
to do with the instantaneous velocity which a body actually
possesses at a given instant or with the mean of its velocities
during a certain succession of instants., We have now
exactly the same distinction to make in the case of accelera-
tions. The acceleration which a body is undergoing at a
given instant is ke rate at whick its velocity is changing at
that instant, measured in foot-seconds of additional velocity
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(positive or negative) per second. It does not follow!
because a body has at a given instant an acceleration of six
foot-seconds per second that therefore it will actually in any
one second receive this additional velocity. All that we
can say about it is that 7f the rate of change of velocity
continued unaltered for a whole second the amount of the
change would be six feet-per-second.

It frequently happens that our problems are connected not
so much with the actual acceleration of a body at any given
instant, as with the average value of its accelerations at each
instant over some finite time-interval. In such a case we
find the total change of velocity which has occurred,—that
is the difference between the initial and final velocities,—and
divide by the time in seconds to obtain the mean acceleration
during the time.

The acceleration thus found 1s not necessarily the actual
mean acceleration. It is the acceleration which, if it had
acted uniformly for the given time, would have produced the
given change of velocity in that time. But if the actual
acceleration, as is most often the case, has been varying,
it would at most instants differ from the mean acceleration
thus found, and it might or might not be a part of our
problem to find out at what instants the two values agreed.

The distinction between the actual acceleration at a given
instant, and the mean acceleration over a given time, must
be kept in mind as clearly as the analogous distinction
(P- 163) between instantaneous and mean velocity.

In order, then, that we may measure the real change
taking place in the velocity of an accelerated body we must
know the rate at which the change is taking place, and our
unit for measuring this rate of change, for which “accelera-
tion” is only another name, is one foot-per-second of velocity

1 See the similar case of velocities on p. 163.
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added in one second—or one foot-second per second. The
number of units of velocity which would be gained in a
unit of time if the change continued uniformly for that time,
measures the acceleration of the body, or its rate of change
of velocity.

It carinot be too distinctly remembered that we cannot
speak of an acceleration of so many feet-per-second. It
1s unfortunate that we have no short expression to stand
for a unit of velocity, so that we are compelied to adopt the
somewhat cumbrous phrase already used. If a foot-per-
second were called (as Dr. Lodge suggests) a ““ speed,” then
the unit of acceleration might be said to be one speed-per-
second.  As 1t is, a foot-second per second seems the shortest
available expression which we can use for it. When, therefore,
we say that a body receives an acceleration of 10, we mean
that it receives additional velocity at a rate which, if it
remained unaltered for one second, would amount to ten
feet per second in that time.

When the acceleration of a body is the same at successive
instants it is said to be uniform, in all other cases it is w#-
uniform, or varying. If a body has a uniform acceleration
over a certain period of time, its mean acceleration during
that period is equal toits acceleration at each and every
instant of the period. It is in such a case the same to us
whether we have to do with the acceleration at one instant
or the mean of the acceleration at many successive instants,
for at every instant the acceleration 1s the same. As this
case is so much simpler than that of varying acceleration
we shall consider 1t by itself first, only premising thatin a
majority of the cases occurring in engineering problems the
acceleration is varying, and that the assumption of uniform
acceleration 1n some such cases may lead to serious error, if
indeed it does not make the problems altogether meaningless.






