CHAPTER VIL.

CONSTRAINT AND VELOCITY RATIO IN HIGHER PAIRING
INVOLVING PLANE MOTION.

60. Constraint of Bodies having Plane Motion.—It has
already been stated that a body free to move in a plane
possesses three degrees of freedom and has three degrees of
constraint. Further constraint may be applied by causing
such a body to touch certain points on the surface of a sec-
ond rigid fixed body, these points being known as points
of restraint. A point of restraint of a figure or body may
be defined as a point on its outline, so touched by a point
on the outline of a second fixed figure or body, that no rela-
tive sliding motion is possible along or parallel to the com-
mon normal to the two figures at the point of contact.
When thus restrained the body or figure is considered as
being kept 1n contact with the point or points of restraint.

We may take an example to illustrate the meaning of
this definition, and to show the actual nature of points of
restraint. Suppose (in Fig. 116a) that it is required to ar-
range a support or base, a, for a tripod, b, so that an instru-
ment fixed on b can be removed from its support and re-
placed exactly in its previous position. This may be effected
by providing b with three rounded points or legs, CDE. A
hole, F, is made 1n the base, a, and is of pyramidal or conical
form, so that if the rounded end of C is placed in F, there
will be contact at three points of restraint: in this way, so
long as the contact is maintained, the only possible relative
motion of ¢ and a will be one of rotation about some axis
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passing through the centre of the spherical surface of the
end of C. The next step is to provide on a a slot or groove,
G, of triangular cross-section as shown; when D is placed in
this groove there will be two more points of restraint, and
the only possible relative motion remaining will be a rota-
tion about the axis CD. Finally the position of b is fixed
relatively to a if the third point £ is made to rest in contact
with a flat surface, i, formed on or connected with a, thus
furnishing the sixth point of restraint required (see § 7).

Fi1G. 1164a.

The whole device is known as the ‘‘hole, slot, and plane.”’
The application of similar principles is illustrated in the
design of Ewing’s extensometer,* an instrument for meas-
uring the deformation of test-pieces under stress. In this
apparatus the bar or test-piece whose extension or com-
pression is to be measured (a in Fig. 116b) carries a clip, b,
attached by the points of two set-screws in such a way that
b can move relatively to a about the axis of the set-screws
at B. The clip b carries a projection, ', ending in a rounded

* Ewing, Strength of Materials, p. 75.
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point F. This point engages with a pyramidal or conical
hole formed on a second clip, ¢, which is also secured to a by
means of two set-screws at C. So long as F rests in its
recess, b and ¢ can have no relative motion unless the length
BC alters; 1 that case the angular motion of b and ¢ will be
proportional to the extension or compression of a. Actually
the projection &’ is not rigidly attached to b, but can turn
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FiG. 1164,

through a small angle about the axis BD. This provision
is made in order that any minute twist of the test-piece a
about its axis BC may not affect the angular motion of b
and ¢ to any appreciable extent. This angular mcvement
1s indicated by the scale £ attached to ¢; the distances CF,
CG are equal, so that the movement of the scale, as read by
the microscope at M, will be twice the actual deformation
of the test-piece as taken on the length BC.
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Similar methods are followed in designing the so-called
kinematic clamps and kinematic slides.*

A kinematic clamp is a contrivance intended to fix com-
pletely the position of one body with reference to another;
a kinematic slide permits one body to have on> degree of
freedom with reference to another.

On consideration it is plain that in a kinematic clamp
or slide the points of restraint must be suitably placed
with regard to the shape of the body to be restrained.

It is thus proper to inquire what must be the disposition
of the points of restraint required, either to define the posi-
tion of one body relatively to another, or to permit the
movable body to retain one degree of freedom, and thus to
constrain its motion completely. We shall suppose that
the movable body at first possesses three degrees of free-
dom, and is capable of plane motion.

Let a (Fig. 117) be such a body, and let a fourth point

Fic. :17. F1G. 118,

of restraint, A, be provided, in addition to the three points
necessary for insuring plane motion. The arrow-head
then represents the fourth point of contact of the restraining
or fixed body.

Draw AA’ norma’ to the tangent of the outline of a at A.
Any possible motion of a may be regarded as an instan-

* For an example of a kinematic slide, see Min. Proc. Inst C. E., Vti;l_.
CXXXI1L, p 409.
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taneous rotation about a virtual axis perpendicular to the
plane of motion. We need therefore only consider how the
single point of restraint, A, affects the possibility of turning
the body a about such an axis. It must be remembered
that by the definition of a point of restraint, a is to be kept
in contact with the restraining body. This is impossible if
the virtual centre is not somewhere along AA’, for if the
virtual centre were, say, at B, a point about which only
right-handed rotation is possible, it is plain that such rota-
tion could only occur if the point A ceased to touch the
restraining body. Hence we see that any possible instan-
taneous motion of a must be about a virtual centre situated
in AA’, and any motion of translation must be along a line
at right angles to AA’.

Next consider the effect of keeping the body a in contact
with a restraining body at two points, A and B. Let the
normals AA’, BB’ intersect at . The body is then only
capable of an instantaneous rotation about P. If the nor-
mals are parallel, then only an instantaneous motion of
translation, ie., rotation about an infinitely distant axis
will be possible.

On adding another point of restraint, C (Fig. r19), it will
be found that if we suppose that the body a remains in con-
tact with the three new points of restraint, A, B, C, no
movement 1s possible, except when the three normals inter-
sect in one point or are parallel. In these cases instanta-
neous turning about the point of intersection, and instanta-
neous translation about an infinitely distant axis, are re-
spectively possible, so that a at the instant considered will
thus possess one degree of freedom and will have constrained
motion.

In Fig. 119 a little consideration shows that no move-
ment at all 1s possible except about an axis situated within
the triangle POR, so long as the restraining body is rigid.
The whole field of motion, with the exception of PQR, then
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becomes what Reuleaux calls a ‘‘field of restraint.”” But
if movement did occur about an axis placed within the
triangle POR (in the figure such rotation could only be
right-handed), the body a would at once cease to touch the
restraining points with whiclr we suppose it to be kept in
contact. A similar result will be found with other arrange-
ments of the points of restraint, and therefore in general

Fic. 119, Fi1c. 120.
the position of a will be fixed if it is made to touch the re-
straining body at the three additional points A, B, C, a
result already stated in § 7.

Fig. 120 shows the case in which the three normals meet
in a point, P. If the shape of the body a is such that no point
of restraint can be so applied as to have a normal that does
not pass through P, then the body cannot be fixed by the
application of three or any number of points of restraint,
and its shape must be altered for that purpose. For exam-
ple, a circular disc kaving plane motion could not be so fixed.

It is thus evident (a) that if one of two rigid bodies
capable of relative plane motion remains in continuous con-
tact with two points of restraint formed on the second body,
the relative motion is constrained, and the virtual centre of
the two bodies is always at the intersection of the two com-
mon normals.
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Also (b) if three points of restraint are employed, and
contact at all three is continuous, constrained relative
motion i1s only possible if the three common normals inter-
sect in a point, or are parallel.

The reader will find that the constraint of the motion
of a body by means of such points of restraint as have been
defined above is an easier matter than the limitation of the
movement of a body by points of contact with a second
fixed body, if no force i1s supposed to keep the two bodies
in contact. In this case the bodies would possess greater
freedom of motion than under the restrictions we have
supposed. The theory of constraint has been treated by
Reuleaux * and by Burmester,{ to whose wotks the student
is referred for information on the subject.

61. Closed Higher Pairs having Plane Motion.—Let us
next suppose that the moving body a and the second or fixed
body b, while kept in continuous contact, have such forms
that one 1s the geometrical envelope of the other, and that
in every position the normals at the several points of con-
tact are either parallel or meet 1n a point. It is obvious that
in this case at any instant a can move 1n one way, and in
one way only, with reference to b; in other words, a and b
will form a closed pair. We proceed to consider some exam-
ples of such pairing, which in general will be higher pairing,
in accordance with the definitions 1in § 2.

In Fig. 1214, let ABCD be a figure (called by Reuleaux
a Duangle), drawn by describing the arcs ABC, CDA, with
a radius equal to BD, and with D and B as centres re-
spectively. Suppose that this figure, representing a body, a
having plane motion, is made to touch two lines, PQ, OR,
inclined at an angle of 60° the points £ and F on these
lines forming points of restraint for the duangle, and the
lines PQ, QR representing the profile of the restraining
body b. The normals at E and F to QR and QP will inter-

* Reuleaux, Kinematics Chapter 1I1. ¥ Burmester, Kinematik, Chapter V.
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sect at O, where they make an angle FOE =120° and they
must pass respectively through the points B and D, since
these points are the centres of the arcs ADC, ABC.

As the duangle moves in contact with PQ and QR, the

':"g CENTRODE OF (1
(b Fixep)

Fi1c. 1214,

path of B must be a straight line, GBH, parallel to QR and
at a distance, BE, from it. The path of D similarly must
be a line, GDK, parallel to OP. Hence the motion of the
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duangle relatively to PQ, QR will be the same as that of a
straight line of constant length, BD, whose ends lie contin-
ually upon two lines, KG, HG, enclosing an angle of 60°;
further, the virtual centre of the two bodies will be the
point O, the intersection of the two common normals.

Since the angles OBG, ODG are right angles, a circle may
be drawn on GO as diameter, passing through the points
GB, OD. The point A also lies on this circle, since the angle
BAD 1s 60°. Join AG. Then so long as the curves ABC,
ADC touch the lines QP, QR respectively, the angle AGD =
angle ABD =constant. Thus A lies continually on a line,
RP, drawn through G and inclined at 60° to RQ. POR is
then an equilateral triangle, inside of which the duangle
moves. The relative motion of the triangle and the duangle
will be constrained if AO is the normal to PR at A 1e., if
the three normals at the points of contact meet at O. This
1s seen to be the case, for the angles AOD, ABD, ADB,
AOB are all equal. Hence AO bisects the angle BOD and
1s perpendicular to PR.

The path described by O with reference to the triangle
POR is the centrode of the duangle. It evidently consists
of a curve joining K and H. Now in any position the circle
drawn on GO as diameter and passing through B and D has
a chord, BD, of constant length, and the angle BGD 1s con-
stant. Hence GO, the diameter of this circle, 1s the same
(length =GH) for all positions of O. Thus O lies on a cir-
cular arc joining K and H and having G as centre, and the
complete locus of O with regard to the triangle 1s an equi-
lateral curve-triangle GKH (Fig 121b). Since the angle BOD
is constant, the locus of O with regard to the duangle is seen
to be a duangle BODO(O’, the radius of whose sides is $GO.

The whole relative motion of the duangle ABCD and
the triangle POR is thus represented by the rolling of the
duangle BOD(O’ inside the curve-triangle GHOK. The
centrode of A BCD with regard to the triangle POR 1s GHOK ;
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that of the triangle with reference to ABCD being BOD('.
Any point on the duangle ABCD will have a path made
up of trochoidal curves described on the plane of the
triangle POR, and vice versa.

Relative motion of the duangle and the equilateral tri-
angle may evidently be represented by the rolling together
of a pair of circular arcs, one having a radius twice that of
the other. Points on either figure will therefore describe
trochoidal curves on the other.

The example just given will indicate the method of
studying the relative motions of the elements of higher
pairs having plane motion. A large number of closed
higher pairs may be devised by utilizing figures of constant
breadth. The equilateral curve-triangle previously men-
tioned is such a figure, and its motion relatively to a circum-
scribed square may be followed as an exercise.

A number of other forms are given by Reuleaux in the
chapter already quoted. The student should note in all
these cases that the form of the path described on b by a
point on a@ is not the same as that described on a by the
corresponding point on b, a condition previously mentioned
as being characteristic of higher pairing.

62. Form of Elements for a Given Motion.—Having illus-
trated the method of determining the centrodes and the
relative motion in the case of higher pairs of mutually re-
straining elements of given profile, we have next to show
how to solve the converse of this problem, namely, how to
find the forms of a pair of elements whose relative motion is
previously decided. The relative motion in question must,
of course, be defined by the forms of a pair of given cen-
trodes, the mutual rolling of which, as already stated, rep-
resents the relative motion required. It most frequently
happens in practice that we have also given the form or
profile of one element of the pair, and the form of the second
has to be found.
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Let AA and BB (Fig. 122) be a pair of centrodes, of
which A belongs to, or is traced upon, a body whose profile
is aa’. It 1s required to find the profile of a second body to

which the centrode BB belongs; the profile to be such that
while the two bodies remain in continuous contact the cen-
trodes will roll on one another and the bodies will thus have
the desired relative motion.

Take any point, a, in the profile aa’ and draw aC normal
to aa’ at a, and cutting the centrode A at C. In this case
for convenience aa’ is shown in the figure as a straight line,
but 1t may, of course, be of any form.

At the instant when the profile bb’ (to be found) touches
the given profile at the point @, aC must be the common nor-
mal, and the virtual centre of the two bodies must lie on this
normal, for otherwise contact would not be continuous.
The point C, where the normal at a cuts the centrode A,
must at that instant be the virtual centre of bb’ with regard
to aa’, since the curve AC is the locus of the virtual centre
of b. AC may be regarded as being attached to aa’, since
it 1s a curve traced on the body represented in outline by aa’.
We proceed to find a point, b, on the profile of the second or
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moving body, such that when a and b are in contact C is
the virtual centre of the two bodies and aC the common
normal. . -

Suppose that the centrodes AA and BB are in contact
at some point D, and measure along the centrode BE a
length DC, equal to the length of DC measured along 4.4.
Draw B,CD,, representing the centrode B in the position it
occupies when a is the point of contact of the two bodies and
C is their virtual centre, and make CD, =CD. JoinalD,.

Then since the outline of bb’ may be regarded as attached
to the centrode B, any point on that outline having the same
position in relation to C, and D that the point a has in rela-
tion to C and D, will be the point that touches a when the
centrodes touch at C. Accordingly we need only make b) =
aD, and bC,=aC in order to determine the position of b.
The point b is then a point on the required profile which
will touch the point a when C is the virtual centre of the
two bodies. In the same way we can determine any other
point on the profile required, and it only remains to pro-
vide the resulting body with the restraint required to pre-
vent any other motion than that desired. This would in
general be done by so forming the body bb” that it possesses
at any instant three points of contact with aa’, the normals
to these points always intersecting at the virtual centre.
It would, in fact, be necessary to repeat the construction of
Fig. 122, assuming two other portions of the outline of ad’,
and finding two new portions of the outline of bb’, the cen-
trodes, of course, remaining the same as before. It may
be noted that while the relative motion of the centrodes
is one of simple rolling, that of the two outlines is in general
rolling and sliding combined.

63. Condition for Uniform Velocity Ratio.—We have seen
in § 6o that when two bodies are in continuous contact and
are capable of constrained relative motion, the normals at
the points of contact must intersect at the virtual centre.

Consider now the case of three bodies (Fig. 123) of which






